The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 32-49
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a discussion on the second-order accuracy difference schemes for approximate solution of the integral-type time-nonlocal parabolic problems. The theorems on the stability of r-modified Crank–Nicolson difference schemes and second-order accuracy implicit difference scheme for approximate solution of the integral-type time-nonlocal parabolic problems in a Hilbert space with self-adjoint positive definite operator are established. In practice, stability estimates for the solutions of the second-order accuracy in $t$ difference schemes for the one and multidimensional time-nonlocal parabolic problems are obtained. Numerical results are given.
Keywords:
nonlocal parabolic problem, second-order accuracy difference scheme, Crank–Nicolson scheme, implicit difference scheme, stability.
@article{CMFD_2023_69_1_a2,
author = {A. Ashyralyev and Ch. Ashyralyyev},
title = {The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {32--49},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/}
}
TY - JOUR AU - A. Ashyralyev AU - Ch. Ashyralyyev TI - The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 32 EP - 49 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/ LA - ru ID - CMFD_2023_69_1_a2 ER -
%0 Journal Article %A A. Ashyralyev %A Ch. Ashyralyyev %T The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 32-49 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/ %G ru %F CMFD_2023_69_1_a2
A. Ashyralyev; Ch. Ashyralyyev. The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 32-49. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/