Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_1_a2, author = {A. Ashyralyev and Ch. Ashyralyyev}, title = {The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {32--49}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/} }
TY - JOUR AU - A. Ashyralyev AU - Ch. Ashyralyyev TI - The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 32 EP - 49 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/ LA - ru ID - CMFD_2023_69_1_a2 ER -
%0 Journal Article %A A. Ashyralyev %A Ch. Ashyralyyev %T The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 32-49 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/ %G ru %F CMFD_2023_69_1_a2
A. Ashyralyev; Ch. Ashyralyyev. The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 32-49. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/
[1] Ashurov R. R., Mukhiddinova A. T., “Obratnaya zadacha po opredeleniyu plotnosti teplovykh istochnikov dlya uravneniya subdiffuzii”, Diff. uravn., 56:12 (2020), 1596–1609 | DOI | Zbl
[2] Ashyralyev A., Sobolevskii P. E., “Raznostnye skhemy vysokogo poryadka tochnosti dlya parabolicheskikh uravnenii s peremennymi koeffitsientami”, Dokl. AN USSR. Ser. A, 6 (1988), 3–7 | MR | Zbl
[3] Gulin A. V., Ionkin N. I., Morozova V. A., “Ob ustoichivosti nelokalnoi dvumernoi raznostnoi zadachi”, Diff. uravn., 37:7 (2001), 926–932 | MR | Zbl
[4] Gulin A. V., Morozova V. A., “Ob ustoichivosti nelokalnoi raznostnoi kraevoi zadachi”, Diff. uravn., 39:7 (2003), 912–917 | MR | Zbl
[5] Kozhanov A. I., “Razreshimost kraevykh zadach dlya lineinykh parabolicheskikh uravnenii v sluchae zadaniya integralnogo po vremennoi peremennoi usloviya”, Mat. zametki SVFU, 21:4 (2014), 20–30 | Zbl
[6] Orazov I., Sadybekov M. A., “Ob odnom klasse zadach opredeleniya temperatury i plotnosti istochnikov tepla po nachalnoi i konechnoi temperaturam”, Sib. mat. zh., 53:1 (2012), 180–186 | MR | Zbl
[7] Rossovskii L. E., Khanalyev A. R., “Koertsitivnaya razreshimost nelokalnykh kraevykh zadach dlya parabolicheskikh uravnenii”, Sovrem. mat. Fundam. napravl., 62, 2016, 140–151
[8] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. II”, Sovrem. mat. Fundam. napravl., 33, 2009, 3–179
[9] Sobolevskii P. E., “Neravenstva koertsitivnosti dlya abstraktnykh parabolicheskikh uravnenii”, Dokl. AN SSSR, 157:1 (1964), 52–55 | Zbl
[10] Sobolevskii P. E., “O koertsitivnoi razreshimosti raznostnykh uravnenii”, Dokl. AN SSSR, 201:5 (1971), 1063–1066 | Zbl
[11] Sobolevskii P. E., Raznostnye metody resheniya differentsialnykh uravnenii, VGU, Voronezh, 1975
[12] Starovoitov V. N., “Ob odnoznachnoi razreshimosti lineinoi parabolicheskoi zadachi s nelokalnymi po vremeni dannymi”, Sib. mat. zh., 62:2 (2021), 417–421 | Zbl
[13] Shelukhin V. V., “Zadacha so srednimi po vremeni dannymi dlya nelineinykh parabolicheskikh uravnenii”, Sib. mat. zh., 32:2 (1991), 154–165 | MR | Zbl
[14] Shelukhin V. V., “Variatsionnyi printsip v nelokalnykh po vremeni zadachakh dlya lineinykh evolyutsionnykh uravnenii”, Sib. mat. zh., 34:2 (1993), 191–207 | MR | Zbl
[15] Ashyralyev A., “Well-posedness of the modified Crank-Nicholson difference schemes in Bochner spaces”, Discrete Contin. Dyn. Syst. Ser. B, 7:1, 29–51 | MR | Zbl
[16] Ashyralyev A., Agirseven D., Agarwal R. P., “Stability estimates for delay parabolic differential and difference equation”, Appl. Comput. Math., 19:2 (2020), 175–204 | MR | Zbl
[17] Ashyralyev A., Ashyralyyev C., “On the stability of parabolic differential and difference equations with a time-nonlocal condition”, Comput. Math. Math. Phys., 62:6 (2022), 962–973 | DOI | MR
[18] Ashyralyev A., Ashyraliyev M., Ashyralyyeva M. A., “Identification problem for telegraph-parabolic equations”, Comput. Math. Math. Phys., 60:8 (2020), 1294–1305 | DOI | MR | Zbl
[19] Ashyralyev A., Hanalyev A., Sobolevskii P. E., “Coercive solvability of nonlocal boundary value problem for parabolic equations”, Abstr. Appl. Anal., 6:1 (2002), 53–61 | DOI | MR
[20] Ashyralyev A., Sobolevskii P. E., New Difference Schemes for Partial Differential Equations, Birkhäuser, Basel—Boston—Berlin, 2004 | MR | Zbl
[21] Ashyralyyev C., “Stability of Rothe difference scheme for the reverse parabolic problem with integral boundary condition”, Math. Methods Appl. Sci., 43:8 (2020), 5369–5379 | DOI | MR | Zbl
[22] Ashyralyyev C., “The second order of ADS for reverse parabolic boundary value problem with integral condition”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 46:2 (2020), 346–359 | MR | Zbl
[23] Ashyralyyev C., Gonenc A., “Crank—Nicolson difference scheme for reverse parabolic nonlocal problem with integral and Neumann boundary conditions”, Int. J. Appl. Math., 34:2 (2021), 273–282 | MR
[24] Ashyraliyev M., “On hyperbolic-parabolic problems with involution and Neumann boundary condition”, Int. J. Appl. Math., 34:2 (2021), 363–376 | DOI
[25] Beyn W. J., Garay B. M., “Estimates of variable stepsize Runge—Kutta methods for sectorial evolution equations with nonsmooth data”, Appl. Numer. Math., 41:3 (2002), 369–400 | DOI | MR | Zbl
[26] Buranay S. C., Arshad N., “Hexagonal grid approximation of the solution of heat equation on special polygons”, Adv. Difference Equ., 2020 (2020), 309, 1–24 | DOI | MR
[27] Buranay S. C., Matan A. H., Arshad N., “Two stage implicit method on hexagonal grids for approximating the first derivatives of the solution to the heat equation”, Fractal and Fractions, 5:19 (2021), 1–26
[28] Erdogan A. S., Numerical solution of parabolic inverse problem with an unknown source function, Kand. diss., Yildiz Technical University, Istanbul, 2010
[29] Erdogan A. S., “Numerical solution of a parabolic problem with involution and nonlocal conditions”, Int. J. Appl. Math., 34:2 (2021), 401–410 | DOI
[30] Gavrilyuk I. P., “Strongly $p$-positive operators and explicit representations of the solutions of initial value problems for second-order differential equations in Banach space”, J. Math. Anal. Appl., 236:2 (1999), 327–349 | DOI | MR | Zbl
[31] Gavrilyuk I. P., Makarov V. L., “Exponentially convergent parallel disretization method for the first order evolution equation”, Appl. Math. Inform., 5:2 (2000), 47–69 | MR | Zbl
[32] Guidetti D., Karasozen B., Piskarev S., “Approximation of abstract differential equations”, J. Math. Sci. (N. Y.), 122:2 (2004), 3013–3054 | DOI | MR | Zbl
[33] Iskenderov N. Sh., Allahverdiyeva S. I., “Inverse boundary value problem for the boussinesq-love equation with nonlocal integral condition”, TWMS J. Pure Appl. Math., 11:2 (2020), 226–237 | MR | Zbl
[34] Islomov B. I., Alikulov Y. K., “Boundary value problem for loaded equation of parabolichyperbolic type of the third order in an infinite three-dimensional domain”, Int. J. Appl. Math., 34:2 (2021), 377–389 | DOI
[35] Khankishiyev Z. F., “Solution of one problem for linear loaded parabolic type of differential equation with integral conditions”, Adv. Math. Models Appl., 7:2 (2022), 178–190 | MR
[36] Musaev N. K., “The Cauchy problem for degenerate parabolic convolution equation”, TWMS J. Pure Appl. Math., 12:2 (2021), 278–288 | MR | Zbl
[37] Restrepo J. E., Suragan D., “Direct and inverse Cauchy problems for generalized space-time fractional differential equations”, Adv. Differ. Equ., 26:7/8 (2021), 305–339 | MR | Zbl
[38] Ruzhansky M., Serikbaev D., Torebek B. T., Tokmagambetov N., “Direct and inverse problems for time-fractional pseudo-parabolic equations”, Quaest. Math., 45:7 (2022), 1071–1089 | DOI | MR | Zbl
[39] Sadybekov M. A., “Stable difference scheme for a nonlocal boundary value heat conduction problem”, e-J. Anal. Appl. Math., 2018:1 (2018), 1–10 | MR
[40] Shakhmurov V., “Regularity properties of nonlocal fractional differential equations and applications”, Georgian Math. J., 29:2 (2022), 275–284 | DOI | MR | Zbl
[41] Wang Y. G., Oberguggenberger M., “Nonlinear equations with regularized derivatives”, J. Math. Anal. Appl., 233:2 (1999), 644–658 | DOI | MR | Zbl