The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 32-49

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a discussion on the second-order accuracy difference schemes for approximate solution of the integral-type time-nonlocal parabolic problems. The theorems on the stability of r-modified Crank–Nicolson difference schemes and second-order accuracy implicit difference scheme for approximate solution of the integral-type time-nonlocal parabolic problems in a Hilbert space with self-adjoint positive definite operator are established. In practice, stability estimates for the solutions of the second-order accuracy in $t$ difference schemes for the one and multidimensional time-nonlocal parabolic problems are obtained. Numerical results are given.
Keywords: nonlocal parabolic problem, second-order accuracy difference scheme, Crank–Nicolson scheme, implicit difference scheme, stability.
@article{CMFD_2023_69_1_a2,
     author = {A. Ashyralyev and Ch. Ashyralyyev},
     title = {The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {32--49},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/}
}
TY  - JOUR
AU  - A. Ashyralyev
AU  - Ch. Ashyralyyev
TI  - The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 32
EP  - 49
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/
LA  - ru
ID  - CMFD_2023_69_1_a2
ER  - 
%0 Journal Article
%A A. Ashyralyev
%A Ch. Ashyralyyev
%T The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 32-49
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/
%G ru
%F CMFD_2023_69_1_a2
A. Ashyralyev; Ch. Ashyralyyev. The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 32-49. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a2/