Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_1_a10, author = {V. E. Fedorov and A. D. Godova}, title = {Integro-differential equations in {Banach} spaces and analytic resolving families of operators}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {166--184}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/} }
TY - JOUR AU - V. E. Fedorov AU - A. D. Godova TI - Integro-differential equations in Banach spaces and analytic resolving families of operators JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 166 EP - 184 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/ LA - ru ID - CMFD_2023_69_1_a10 ER -
%0 Journal Article %A V. E. Fedorov %A A. D. Godova %T Integro-differential equations in Banach spaces and analytic resolving families of operators %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 166-184 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/ %G ru %F CMFD_2023_69_1_a10
V. E. Fedorov; A. D. Godova. Integro-differential equations in Banach spaces and analytic resolving families of operators. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 166-184. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/
[1] Avilovich A. S., Gordievskikh D. M., Fedorov V. E., “Voprosy odnoznachnoi razreshiomsti i priblizhennoi upravlyaemosti dlya lineinykh uravnenii drobnogo poryadka s gelderovoi pravoi chastyu”, Chelyab. fiz.-mat. zh., 5:1 (2020), 5–21 | MR
[2] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[4] Klement F., Kheimans Kh., Angenent S., van Duin K., de Pakhter B., Odnoparametricheskie polugruppy, Mir, M., 1992
[5] Solomyak M. Z., “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122:6 (1958), 766–769 | Zbl
[6] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980
[7] Fedorov V. E., Avilovich A. S., “Zadacha tipa Koshi dlya vyrozhdennogo uravneniya s proizvodnoi Rimana—Liuvillya v sektorialnom sluchae”, Sib. mat. zh., 60:2 (2019), 461–477 | MR | Zbl
[8] Fedorov V. E., Filin N. V., “Lineinye uravneniya s diskretno raspredelennoi drobnoi proizvodnoi v banakhovykh prostranstvakh”, Tr. In-ta mat. i mekh. UrO RAN, 27, no. 2, 2021, 264–280
[9] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985
[10] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued laplace transforms and Cauchy problems, Springer, Basel, 2011 | MR
[11] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Sci, 20 (2016), 763–769 | DOI
[12] Bajlekova E. G., Fractional evolution equations in Banach spaces, Kand. diss., Eindhoven Univ. of Technology, Eindhoven, 2001 | MR | Zbl
[13] Boyko K. V., Fedorov V. E., “The Cauchy problem for a class of multi-term equations with Gerasimov—Caputo derivatives”, Lobachevskii J. Math., 43:6 (2022), 1293–1302 | DOI | MR
[14] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Prog. Fract. Differ. Appl., 1:2 (2015), 1–13 | MR
[15] Fedorov V. E., “Generators of analytic resolving families for distributed order equations and perturbations”, Mathematics, 8:8 (2020), 1306 | DOI
[16] Fedorov V. E., Du W.-S., Kostic M., Abdrakhmanova A. A., “Analytic resolving families for equations with distributed Riemann—Liouville derivatives”, Mathematics, 10:5 (2022), 681 | DOI | MR
[17] Fedorov V. E., Godova A. D., Kien B. T., “Integro-differential equations with bounded operators in Banach spaces”, Bull. Karaganda Univ. Math. Ser, 2022, no. 2, 93–107 | DOI
[18] Fedorov V. E., Filin N. V., “On strongly continuous resolving families of operators for fractional distributed order equations”, Fractal and Fractional, 5:1 (2021), 20 | DOI | Zbl
[19] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Analytic resolving families for equations with the Dzhrbashyan—Nersesyan fractional derivative”, Fractal and Fractional, 6:10 (2022), 541 | DOI
[20] Fedorov V. E., Turov M. M., “Sectorial tuples of operators and quasilinear fractional equations with multi-term linear part”, Lobachevskii J. Math., 43:6 (2022), 1502–1512 | DOI | MR | Zbl
[21] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam—Boston—Heidelberg, 2006 | MR | Zbl
[22] Pazy A., Semigroups and linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl
[23] Prabhakar T. R., “A singular integral equation with a generalized Mittag—Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl
[24] Prüss J., Evolutionary integral equations and applications, Springer, Basel, 1993 | MR
[25] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives. Theory and applications, Gordon and Breach, Philadelphia, 1993 | MR | Zbl
[26] Sitnik S. M., Fedorov V. E., Filin N. V., Polunin V. A., “On the solvability of equations with a distributed fractional derivative given by the Stieltjes integral”, Mathematics, 10:16 (2022), 2979 | DOI
[27] Tarasov V. E., Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer, New York, 2011 | MR
[28] Uchaikin V. V., Fractional derivatives for physicists and engineers, v. I, II, Springer, Berlin–Heidelberg, 2013 | MR | Zbl