Integro-differential equations in Banach spaces and analytic resolving families of operators
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 166-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of equations in Banach spaces with a Riemann–Liouville-type integro-differential operator with an operator-valued convolution kernel. The properties of $k$-resolving operators of such equations are studied and the class $\mathcal A_{m,K,\chi}$ of linear closed operators is defined such that the belonging to this class is necessary and, in the case of commutation of the operator with the convolution kernel, is sufficient for the existence of analytic in the sector $k$-resolving families of operators of the equation under study. Under certain additional conditions on the convolution kernel, we prove theorems on the unique solvability of the nonhomogeneous linear equation of the class under consideration if the nonhomogeneity is continuous in the norm of the graph of the operator from the equation or Hölder continuous. We obtain the theorem on sufficient conditions on an additive perturbation of an operator of the class $\mathcal A_{m,K,\chi}$ in order that the perturbed operator also belong to such a class. Abstract results are used in the study of initial-boundary value problems for a system of partial differential equations with several fractional Riemann–Liouville derivatives of different orders with respect to time and for an equation with a fractional Prabhakar derivative with respect to time.
Keywords: integro-differential equations, Banach spaces, Riemann–Liouville operator, unique solvability, Riemann–Liouville fractional derivatives, Prabhakar fractional derivative.
@article{CMFD_2023_69_1_a10,
     author = {V. E. Fedorov and A. D. Godova},
     title = {Integro-differential equations in {Banach} spaces and analytic resolving families of operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {166--184},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - A. D. Godova
TI  - Integro-differential equations in Banach spaces and analytic resolving families of operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 166
EP  - 184
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/
LA  - ru
ID  - CMFD_2023_69_1_a10
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A A. D. Godova
%T Integro-differential equations in Banach spaces and analytic resolving families of operators
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 166-184
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/
%G ru
%F CMFD_2023_69_1_a10
V. E. Fedorov; A. D. Godova. Integro-differential equations in Banach spaces and analytic resolving families of operators. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 166-184. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a10/

[1] Avilovich A. S., Gordievskikh D. M., Fedorov V. E., “Voprosy odnoznachnoi razreshiomsti i priblizhennoi upravlyaemosti dlya lineinykh uravnenii drobnogo poryadka s gelderovoi pravoi chastyu”, Chelyab. fiz.-mat. zh., 5:1 (2020), 5–21 | MR

[2] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[4] Klement F., Kheimans Kh., Angenent S., van Duin K., de Pakhter B., Odnoparametricheskie polugruppy, Mir, M., 1992

[5] Solomyak M. Z., “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122:6 (1958), 766–769 | Zbl

[6] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[7] Fedorov V. E., Avilovich A. S., “Zadacha tipa Koshi dlya vyrozhdennogo uravneniya s proizvodnoi Rimana—Liuvillya v sektorialnom sluchae”, Sib. mat. zh., 60:2 (2019), 461–477 | MR | Zbl

[8] Fedorov V. E., Filin N. V., “Lineinye uravneniya s diskretno raspredelennoi drobnoi proizvodnoi v banakhovykh prostranstvakh”, Tr. In-ta mat. i mekh. UrO RAN, 27, no. 2, 2021, 264–280

[9] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985

[10] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued laplace transforms and Cauchy problems, Springer, Basel, 2011 | MR

[11] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Sci, 20 (2016), 763–769 | DOI

[12] Bajlekova E. G., Fractional evolution equations in Banach spaces, Kand. diss., Eindhoven Univ. of Technology, Eindhoven, 2001 | MR | Zbl

[13] Boyko K. V., Fedorov V. E., “The Cauchy problem for a class of multi-term equations with Gerasimov—Caputo derivatives”, Lobachevskii J. Math., 43:6 (2022), 1293–1302 | DOI | MR

[14] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Prog. Fract. Differ. Appl., 1:2 (2015), 1–13 | MR

[15] Fedorov V. E., “Generators of analytic resolving families for distributed order equations and perturbations”, Mathematics, 8:8 (2020), 1306 | DOI

[16] Fedorov V. E., Du W.-S., Kostic M., Abdrakhmanova A. A., “Analytic resolving families for equations with distributed Riemann—Liouville derivatives”, Mathematics, 10:5 (2022), 681 | DOI | MR

[17] Fedorov V. E., Godova A. D., Kien B. T., “Integro-differential equations with bounded operators in Banach spaces”, Bull. Karaganda Univ. Math. Ser, 2022, no. 2, 93–107 | DOI

[18] Fedorov V. E., Filin N. V., “On strongly continuous resolving families of operators for fractional distributed order equations”, Fractal and Fractional, 5:1 (2021), 20 | DOI | Zbl

[19] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Analytic resolving families for equations with the Dzhrbashyan—Nersesyan fractional derivative”, Fractal and Fractional, 6:10 (2022), 541 | DOI

[20] Fedorov V. E., Turov M. M., “Sectorial tuples of operators and quasilinear fractional equations with multi-term linear part”, Lobachevskii J. Math., 43:6 (2022), 1502–1512 | DOI | MR | Zbl

[21] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam—Boston—Heidelberg, 2006 | MR | Zbl

[22] Pazy A., Semigroups and linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl

[23] Prabhakar T. R., “A singular integral equation with a generalized Mittag—Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl

[24] Prüss J., Evolutionary integral equations and applications, Springer, Basel, 1993 | MR

[25] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives. Theory and applications, Gordon and Breach, Philadelphia, 1993 | MR | Zbl

[26] Sitnik S. M., Fedorov V. E., Filin N. V., Polunin V. A., “On the solvability of equations with a distributed fractional derivative given by the Stieltjes integral”, Mathematics, 10:16 (2022), 2979 | DOI

[27] Tarasov V. E., Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer, New York, 2011 | MR

[28] Uchaikin V. V., Fractional derivatives for physicists and engineers, v. I, II, Springer, Berlin–Heidelberg, 2013 | MR | Zbl