Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_4_a8, author = {M. Yu. Khristichenko and Yu. M. Nechepurenko and D. S. Grebennikov and G. A. Bocharov}, title = {Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {686--703}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/} }
TY - JOUR AU - M. Yu. Khristichenko AU - Yu. M. Nechepurenko AU - D. S. Grebennikov AU - G. A. Bocharov TI - Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 686 EP - 703 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/ LA - ru ID - CMFD_2022_68_4_a8 ER -
%0 Journal Article %A M. Yu. Khristichenko %A Yu. M. Nechepurenko %A D. S. Grebennikov %A G. A. Bocharov %T Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 686-703 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/ %G ru %F CMFD_2022_68_4_a8
M. Yu. Khristichenko; Yu. M. Nechepurenko; D. S. Grebennikov; G. A. Bocharov. Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 686-703. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/
[1] Marchuk G. I., Izbrannye trudy, v. 4, Matematicheskoe modelirovanie v immunologii i meditsine, RAN, M., 2018
[2] Bocharov G., Grebennikov D., Argilaguet J., Meyerhans A., “Examining the cooperativity mode of antibody and CD8+ T cell immune responses for vaccinology”, Trends Immunol., 42 (2021), 852–855 | DOI
[3] Bocharov G., Grebennikov D., Cebollada Rica P., Domenjo-Vila E., Casella V., Meyerhans A., “Functional cure of a chronic virus infection by shifting the virus–host equilibrium state”, Front. Immunol., 13 (2022), 904342 | DOI
[4] Bocharov G. A., Marchuk G. I., “Applied problems of mathematical modelling in immunology”, Comput. Math. Math. Phys., 40 (2000), 1905–1920 | MR
[5] Bocharov G. A., Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S., “Optimal disturbances of bistable time-delay systems modeling virus infections”, Dokl. Math., 98 (2018), 313–316 | DOI | MR
[6] Bocharov G. A., Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S., “Optimal perturbations of systems with delayed independent variables for control of dynamics of infectious diseases based on multicomponent actions”, J. Math. Sci., 253 (2021), 618–641 | DOI | MR
[7] Bocharov G., Volpert V., Ludewig B., Meyerhans A., “Multi-scale and integrative modeling approaches”, Mathematical Immunology of Virus Infections, Springer, Cham, 2018, 221–242 | DOI | MR
[8] Fanning G. C., Zoulim F., Hou J., Bertoletti A., “Therapeutic strategies for hepatitis B virus infection: towards a cure”, Nat. Rev. Drug Discov., 18 (2019), 827–844 | DOI
[9] Geddes K. O., Czapor S. R., Labahn G., Algorithms for computer algebra, Kluwer, Dordrecht, 1992 | MR
[10] Grebennikov D., Karsonova A., Loguinova M., Casella V., Meyerhans A., Bocharov G., “Predicting the kinetic coordination of immune response dynamics in SARS-CoV-2 infection: implications for disease pathogenesis”, Mathematics, 10 (2022), 3154 | DOI
[11] Hartshorne R., Algebraic geometry, Springer, New York—Heidelberg—Berlin, 1977 | MR
[12] Khristichenko M. Yu., Nechepurenko Yu. M., Grebennikov D. S., Bocharov G. A., “Modelling chronic hepatitis B using the Marchuk—Petrov model”, J. Phys. Conf. Ser., 2099 (2021), 012036 | DOI
[13] Marchuk G. I., Mathematical Models in Immunology, Springer, New York—Berlin etc., 1983 | MR
[14] Marchuk G. I., Mathematical modelling of immune response in infectious diseases, Kluwer, Dordrecht, 1997 | MR
[15] Marchuk G. I., Romanyukha A. A., Bocharov G. A., “Mathematical model of antiviral immune response. II. Parameters identification for acute viral hepatitis B”, J. Theor. Biol., 151 (1991), 41–69 | DOI
[16] Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S., Bocharov G. A., “Bistability analysis of virus infection models with time delays”, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2385–2401 | MR
[17] Seydel R., Practical bifurcation and stability analysis, Springer, New York, 2010 | MR
[18] Sklyarova E. V., Nechepurenko Yu. M., Bocharov G. A., “Numerical steady state analysis of the Marchuk—Petrov model of antiviral immune response”, Russ. J. Numer. Anal. Math. Model, 35 (2020), 95–110 | DOI | MR
[19] Wu S., Zhou T., Tian T., “A robust method for designing multistable systems by embedding bistable subsystems”, NPJ Syst. Biol., 8 (2022), 1–9 | DOI