Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 686-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the technology developed by the authors that allows one for fixed values of parameters and tracing by parameters to calculate stationary solutions of systems with delay and analyze their stability. We discuss the results of applying this technology to Marchuk–Petrov's antiviral immune response model with parameter values corresponding to hepatitis B infection. The presence of bistability and hysteresis properties in this model is shown for the first time.
Keywords: Marchuk–Petrov’s antiviral immune response model, delayed argument, stationary solutions, tracing by parameters, numerical experiment, hepatitis B infection, bistability, hysteresis.
@article{CMFD_2022_68_4_a8,
     author = {M. Yu. Khristichenko and Yu. M. Nechepurenko and D. S. Grebennikov and G. A. Bocharov},
     title = {Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {686--703},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/}
}
TY  - JOUR
AU  - M. Yu. Khristichenko
AU  - Yu. M. Nechepurenko
AU  - D. S. Grebennikov
AU  - G. A. Bocharov
TI  - Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 686
EP  - 703
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/
LA  - ru
ID  - CMFD_2022_68_4_a8
ER  - 
%0 Journal Article
%A M. Yu. Khristichenko
%A Yu. M. Nechepurenko
%A D. S. Grebennikov
%A G. A. Bocharov
%T Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 686-703
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/
%G ru
%F CMFD_2022_68_4_a8
M. Yu. Khristichenko; Yu. M. Nechepurenko; D. S. Grebennikov; G. A. Bocharov. Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 686-703. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a8/

[1] Marchuk G. I., Izbrannye trudy, v. 4, Matematicheskoe modelirovanie v immunologii i meditsine, RAN, M., 2018

[2] Bocharov G., Grebennikov D., Argilaguet J., Meyerhans A., “Examining the cooperativity mode of antibody and CD8+ T cell immune responses for vaccinology”, Trends Immunol., 42 (2021), 852–855 | DOI

[3] Bocharov G., Grebennikov D., Cebollada Rica P., Domenjo-Vila E., Casella V., Meyerhans A., “Functional cure of a chronic virus infection by shifting the virus–host equilibrium state”, Front. Immunol., 13 (2022), 904342 | DOI

[4] Bocharov G. A., Marchuk G. I., “Applied problems of mathematical modelling in immunology”, Comput. Math. Math. Phys., 40 (2000), 1905–1920 | MR

[5] Bocharov G. A., Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S., “Optimal disturbances of bistable time-delay systems modeling virus infections”, Dokl. Math., 98 (2018), 313–316 | DOI | MR

[6] Bocharov G. A., Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S., “Optimal perturbations of systems with delayed independent variables for control of dynamics of infectious diseases based on multicomponent actions”, J. Math. Sci., 253 (2021), 618–641 | DOI | MR

[7] Bocharov G., Volpert V., Ludewig B., Meyerhans A., “Multi-scale and integrative modeling approaches”, Mathematical Immunology of Virus Infections, Springer, Cham, 2018, 221–242 | DOI | MR

[8] Fanning G. C., Zoulim F., Hou J., Bertoletti A., “Therapeutic strategies for hepatitis B virus infection: towards a cure”, Nat. Rev. Drug Discov., 18 (2019), 827–844 | DOI

[9] Geddes K. O., Czapor S. R., Labahn G., Algorithms for computer algebra, Kluwer, Dordrecht, 1992 | MR

[10] Grebennikov D., Karsonova A., Loguinova M., Casella V., Meyerhans A., Bocharov G., “Predicting the kinetic coordination of immune response dynamics in SARS-CoV-2 infection: implications for disease pathogenesis”, Mathematics, 10 (2022), 3154 | DOI

[11] Hartshorne R., Algebraic geometry, Springer, New York—Heidelberg—Berlin, 1977 | MR

[12] Khristichenko M. Yu., Nechepurenko Yu. M., Grebennikov D. S., Bocharov G. A., “Modelling chronic hepatitis B using the Marchuk—Petrov model”, J. Phys. Conf. Ser., 2099 (2021), 012036 | DOI

[13] Marchuk G. I., Mathematical Models in Immunology, Springer, New York—Berlin etc., 1983 | MR

[14] Marchuk G. I., Mathematical modelling of immune response in infectious diseases, Kluwer, Dordrecht, 1997 | MR

[15] Marchuk G. I., Romanyukha A. A., Bocharov G. A., “Mathematical model of antiviral immune response. II. Parameters identification for acute viral hepatitis B”, J. Theor. Biol., 151 (1991), 41–69 | DOI

[16] Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S., Bocharov G. A., “Bistability analysis of virus infection models with time delays”, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2385–2401 | MR

[17] Seydel R., Practical bifurcation and stability analysis, Springer, New York, 2010 | MR

[18] Sklyarova E. V., Nechepurenko Yu. M., Bocharov G. A., “Numerical steady state analysis of the Marchuk—Petrov model of antiviral immune response”, Russ. J. Numer. Anal. Math. Model, 35 (2020), 95–110 | DOI | MR

[19] Wu S., Zhou T., Tian T., “A robust method for designing multistable systems by embedding bistable subsystems”, NPJ Syst. Biol., 8 (2022), 1–9 | DOI