Homogenization of a~parabolic equation in a~perforated domain with a~unilateral dynamic boundary condition: critical case
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 671-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the homogenization of a parabolic equation given in a domain perforated by “tiny” balls. On the boundary of these perforations, a unilateral dynamic boundary constraints are specified. We address the so-called “critical” case that is characterized by a relation between the coefficient in the boundary condition, the period of the structure and the size of the holes. In this case, the homogenized equation contains a nonlocal “strange” term. This term is obtained as a solution of the variational problem involving ordinary differential operator.
Keywords: homogenization of parabolic equation, perforated domain, critical case
Mots-clés : strange nonlocal term.
@article{CMFD_2022_68_4_a7,
     author = {A. V. Podolskiy and T. A. Shaposhnikova},
     title = {Homogenization of a~parabolic equation in a~perforated domain with a~unilateral dynamic boundary condition: critical case},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {671--685},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a7/}
}
TY  - JOUR
AU  - A. V. Podolskiy
AU  - T. A. Shaposhnikova
TI  - Homogenization of a~parabolic equation in a~perforated domain with a~unilateral dynamic boundary condition: critical case
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 671
EP  - 685
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a7/
LA  - ru
ID  - CMFD_2022_68_4_a7
ER  - 
%0 Journal Article
%A A. V. Podolskiy
%A T. A. Shaposhnikova
%T Homogenization of a~parabolic equation in a~perforated domain with a~unilateral dynamic boundary condition: critical case
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 671-685
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a7/
%G ru
%F CMFD_2022_68_4_a7
A. V. Podolskiy; T. A. Shaposhnikova. Homogenization of a~parabolic equation in a~perforated domain with a~unilateral dynamic boundary condition: critical case. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 671-685. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a7/

[1] Bekmaganbetov K. A., Chepyzhov V. V., Chechkin G. A., “Silnaya skhodimost attraktorov sistemy reatsii-diffuzii s bystro ostsilliruyuschimi chlenami v ortotropnoi poristoi srede”, Izv. RAN. Ser. Mat., 86:6 (2022), 47–78

[2] Diaz Zh. I., Gomez-Kastro D., Podolskii A. V., Shaposhnikova T. A., “Usrednenie variatsionnykh neravenstv tipa Sinorini dlya p-Laplasiana v perforirovannoi oblasti dlya sluchaya $p \in (1,2)$”, Dokl. RAN, 473:4 (2017), 395–400

[3] Zubova M. N., Shaposhnikova T. A., “Ob usrednenii kraevykh zadach v perforirovannykh oblastyakh s tretim granichnym usloviem i ob izmenenii kharaktera nelineinosti zadachi v rezultate usredneniya”, Diff. uravn., 47:1 (2011), 79–91 | MR

[4] Zubova M. N., Shaposhnikova T. A., “Usrednenie uravneniya diffuzii v oblasti, perforirovannoi vdol $(n-1)$-mernogo mnogoobraziya s dinamicheskimi kraevymi usloviyami na granitse perforatsii: kriticheskii sluchai”, Dokl. RAN, 99:3 (2019), 245–251 | MR

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, URSS, M., 2010

[6] Angulano M., Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media, 2017, arXiv: 1712.01183 | MR

[7] Arrieta J. M., Quittner P., Rodriguez-Bernal A., “Parabolic problems with nonlinear dynamical boundary conditions and singular initial data”, Differ. Integral Equ, 14:12 (2011), 1487–1510 | MR

[8] Bandle C., von Below J., Reichel W., “Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up”, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl, 17:1 (2006), 35–67 | DOI | MR

[9] Bejenaru I., Diaz J. I., Vrabie I. I., “An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamical boundary conditions”, Electron. J. Differ. Equ, 50 (2001), 1–19 | MR

[10] Bekmaganbetov K. A., Chechkin G. A., Chepyzov V. V., “Attractors and a «strange term» in homogenized equation”, C. R. Mecanique, 348:5 (2020), 351–359 | MR

[11] Bekmaganbetov K. A., Chechkin G. A., Chepyzov V. V., “«Strange term» in homogenization of attractors of reaction-diffusion equation in perforated domain”, Chaos Solitons Fractals, 140 (2020), 110208 | DOI | MR

[12] Bekmaganbetov K. A., Chechkin G. A., Toleubay A. M., “Attractors of 2D Navier–Stokes system of equations in a locally periodic porous medium”, Bull. Karaganda Univ. Math., 2022, no. 3, 35–50 | DOI | MR

[13] Conca C., Murat F., Timofte C., “A generalized strange term Signorini's type problems”, ESAIM: Math. Model. Numer. Anal., 3:57 (2003), 773–805 | DOI | MR

[14] Diaz J. I., Gomez-Castro D., Podolskiy A. V., Shaposhnikova T. A., “Homogenization of a net of periodic critically scaled boundary obstacles related to reverse osmosis «nano-composite» membranes”, Adv. Nonlinear Anal., 9 (2018), 193–227 | DOI | MR

[15] Diaz J. I., Gomez-Castro D., Shaposhnikova T. A., Zubova M. N., “A nonlocal memory strange term arising in the critical scale homogenisation of a diffusion equation with a dynamic boundary condition”, Electron. J. Differ. Equ., 2019 (2019), 77 | DOI | MR

[16] Diaz J. I., Shaposhnikova T. A., Zubova M. N., “A strange non-local monotone operator arising in the homogenization of a diffusion equation with dynamic nonlinear boundary conditions on particles of critical size and arbitrary shape”, Electron. J. Differ. Equ., 2022 (2022), 52 | MR

[17] Escher J., “Quasilinear parabolic systems with dynamical boundary conditions”, Commun. Part. Differ. Equ., 18 (1993), 1309–1364 | DOI | MR

[18] Gomez D., Lobo M., Shaposhnikova T. A., Zubova M. N., “On critical parameters in homogenization for nonlinear fluxes in perforated domains by thin tubes and related spectral problems”, Math. Methods Appl. Sci., 38:12 (2015), 2606–2629 | DOI | MR

[19] Gomez D., Perez M. E., Podolskii A. V., Shaposhnikova T. A., “Homogenization of variational inequalities for the p-Laplace operator in perforated media along manifolds”, Appl. Math. Optim., 475 (2017), 1–19 | MR

[20] Timofte C., “Parabolic problems with dynamical boundary conditions in perforated media”, Math. Model. Anal., 8 (2003), 337–350 | DOI | MR

[21] Wang W., Duan J., “Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions”, Commun. Math. Phys., 275:1 (2007), 163–186 | DOI | MR