Explicit solution of a Dirichlet problem in nonconvex angle
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 653-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we give an explicit solution of the Dirichlet boundary-value problem for the Helmholtz equation in a nonconvex angle with periodic boundary data. We present uniqueness and existence theorems in an appropriate functional class and we give an explicit formula for the solution in the form of the Sommerfeld integral. The method of complex characteristics [14] is used.
Keywords: Helmholtz equation, nonconvex angle, Sommerfeld integral, method of complex characteristics.
@article{CMFD_2022_68_4_a6,
     author = {A. Merzon and P. Zhevandrov and J. E. De la Paz M\'endez and M. I. Romero Rodr{\'\i}guez},
     title = {Explicit solution of a {Dirichlet} problem in nonconvex angle},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {653--670},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a6/}
}
TY  - JOUR
AU  - A. Merzon
AU  - P. Zhevandrov
AU  - J. E. De la Paz Méndez
AU  - M. I. Romero Rodríguez
TI  - Explicit solution of a Dirichlet problem in nonconvex angle
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 653
EP  - 670
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a6/
LA  - ru
ID  - CMFD_2022_68_4_a6
ER  - 
%0 Journal Article
%A A. Merzon
%A P. Zhevandrov
%A J. E. De la Paz Méndez
%A M. I. Romero Rodríguez
%T Explicit solution of a Dirichlet problem in nonconvex angle
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 653-670
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a6/
%G ru
%F CMFD_2022_68_4_a6
A. Merzon; P. Zhevandrov; J. E. De la Paz Méndez; M. I. Romero Rodríguez. Explicit solution of a Dirichlet problem in nonconvex angle. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 653-670. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a6/

[1] Malyshev V. A., Sluchainye bluzhdaniya. Uravneniya Vinera—Khopfa v chetverti ploskosti. Avtomorfizmy Galua, MGU, M., 1970

[2] Babich V. M., Lyalinov M. A., Grikurov V. E., Diffraction theory: The Sommerfeld—Malyuzhinets Technique, Alpha Science, Oxford, 2008

[3] Castro L. P., Kapanadze D., “Dirichlet—Neumann impedance boundary-value problems arising in rectangular wedge diffraction problems”, Proc. Am. Math. Soc., 136 (2008), 2113–2123 | DOI | MR

[4] Castro L. P., Kapanadze D., “Wave diffraction by a 45 degree wedge sector with Dirichlet and Neumann boundary conditions”, Math. Comput. Modelling, 48:1/2 (2008), 114–121 | DOI | MR

[5] Castro L. P., Kapanadze D., “Wave diffraction by a 270 degrees wedge sector with Dirichlet, Neumann and impedance boundary conditions”, Proc. A. Razmadze Math. Inst., 155 (2011), 96–99 | MR

[6] Castro L. P., Speck F.-O., Teixeira F. S., “On a class of wedge diffraction problems posted by Erhard Meister”, Oper. Theory Adv. Appl., 147 (2004), 213–240 | MR

[7] Castro L. P., Speck F.-O., Teixeira F. S., “Mixed boundary value problems for the Helmholtz equation in a quadrant”, Integral Equ. Oper. Theory, 56 (2006), 1–44 | DOI | MR

[8] Croisille J.-P., Lebeau G., Diffraction by an elastic immersed wedge, Springer, Berlin–Heidelberg, 1999 | MR

[9] Kay I., “The diffraction of an arbitrary pulse by a wedge”, Commun. Pure Appl. Math., 6 (1953), 521–546 | DOI | MR

[10] Komech A. I., “Elliptic boundary value problems on manifolds with piecewise smooth boundary”, Math. USSR Sb., 21 (1973), 91–135 | DOI | MR

[11] Merzon A. E., De la Paz Méndez J. E., “DN-scattering of a plane wave by wedges”, Math. Methods Appl. Sci., 34:15 (2011), 1843–1872 | DOI | MR

[12] Komech A. I., Mauser N. J., Merzon A. E., “On Sommerfeld representation and uniqueness in scattering by wedges”, Math. Methods Appl. Sci., 28 (2004), 147–183 | DOI | MR

[13] Komech A. I., Merzon A. E., “Limiting amplitude principle in the scattering by wedges”, Math. Methods Appl. Sci., 29:10 (2006), 1147–1185 | DOI | MR

[14] Komech A., Merzon A., Stationary diffraction by wedges, Springer, Cham, 2019 | MR

[15] Komech A. I., Merzon A. E., De la Paz Méndez J. E., “On uniqueness and stability of Sobolev's solution in scattering by wedges”, Z. Angew. Math. Phys., 66:5 (2015), 2485–2498 | DOI | MR

[16] Komech A. I., Merzon A. E., Esquivel Navarrete A., De la Paz Méndez J. E., Villalba Vega T. J., “Sommerfeld's solution as the limiting amplitude and asymptotics for narrow wedges”, Math. Methods Appl. Sci., 42 (2018), 4957–4970 | DOI | MR

[17] Komech A. I., Merzon A. E., De la Paz Méndez J. E., “Time-dependent scattering of generalized plane waves by wedges”, Math. Methods Appl. Sci., 38:18 (2015), 4774–4785 | DOI | MR

[18] Meister E., “Some solved and unsolved canonical problems of diffraction theory”, Differ. Equ. Math. Phys. Proc. Int. Conf. (Birmingham, USA, March 3-8, 1986), Springer, Berlin etc., 1987, 320–336 | MR

[19] Meister E., Passow A., Rottbrand K., “New results on wave diffraction by canonical obstacles”, Oper. Theory Adv. Appl., 110 (1999), 235–256 | MR

[20] Meister E., Penzel F., Speck F.-O., Teixeira F. S., “Some interior and exterior boundary-value problems for the Helmholtz equations in a quadrant”, Proc. Roy. Soc. Edinburgh Sect. A, 123:2 (1993), 275–294 | DOI | MR

[21] Meister E., Penzel F., Speck F.-O., Teixeira F. S., “Two canonical wedge problems for the Helmholtz equation”, Math. Methods Appl. Sci., 17 (1994), 877–899 | DOI | MR

[22] Meister E., Speck F.-O., Teixeira F. S., “Wiener—Hopf—Hankel operators for some wedge diffraction problems with mixed boundary conditions”, J. Integral Equ. Appl., 4:2 (1992), 229–255 | DOI | MR

[23] Merzon A. E., Komech A. I., De la Paz Méndez J. E., Villalba T. J., “On the Keller—Blank solution to the scattering problem of pulses by wedges”, Math. Methods Appl. Sci., 38:10 (2015), 2035–2040 | DOI | MR

[24] Merzon A. E., Zhevandrov P. N., De la Paz Méndez J. E., “On the behavior of the edge diffracted nonstationary wave in scattering by wedges near the front”, Russ. J. Math. Phys., 22:4 (2015), 491–503 | DOI | MR

[25] Muskhelishvili N. I., Singular integral equations, Springer, Dordrecht, 1958 | MR

[26] Penzel F., Teixeira F. S., “The Helmholtz equation in a quadrant with Robin's conditions”, Math. Methods Appl. Sci., 22 (1999), 201–216 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[27] Reed M., Simon B., Methods of modern mathematical physics II: Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR

[28] Sommerfeld A., Mathematical theory of diffraction, Birkhäuser, Boston, 2004 | MR