Nonautonomous dynamics: classification, invariants, and implementation
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 596-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is a brief review of the results obtained in nonautonomous dynamics based on the concept of uniform equivalence of nonautonomous systems. This approach to the study of nonautonomous systems was proposed in [10] and further developed in the works of the second author, and recently  — jointly by both authors. Such an approach seems to be fruitful and promising, since it allows one to develop a nonautonomous analogue of the theory of dynamical systems for the indicated classes of systems and give a classification of some natural classes of nonautonomous systems using combinatorial type invariants. We show this for classes of nonautonomous gradient-like vector fields on closed manifolds of dimensions one, two, and three. In the latter case, a new equivalence invariant appears, the wild embedding type for stable and unstable manifolds [14, 17], as shown in a recent paper by the authors [5].
Keywords: nonautonomous dynamics, nonautonomous vector field, gradient-like vector field, uniform equivalence, wild embedding.
@article{CMFD_2022_68_4_a3,
     author = {V. Z. Grines and L. M. Lerman},
     title = {Nonautonomous dynamics: classification, invariants, and implementation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {596--620},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a3/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - L. M. Lerman
TI  - Nonautonomous dynamics: classification, invariants, and implementation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 596
EP  - 620
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a3/
LA  - ru
ID  - CMFD_2022_68_4_a3
ER  - 
%0 Journal Article
%A V. Z. Grines
%A L. M. Lerman
%T Nonautonomous dynamics: classification, invariants, and implementation
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 596-620
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a3/
%G ru
%F CMFD_2022_68_4_a3
V. Z. Grines; L. M. Lerman. Nonautonomous dynamics: classification, invariants, and implementation. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 596-620. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a3/

[1] Alekseev V. M., Fomin S. V., “Mikhail Valerevich Bebutov”, Usp. mat. nauk, 25:3 (1970), 237–239

[2] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN, 90, 1967, 3–210

[3] Vainshtein A. G., Lerman L. M., “Neavtonomnye nadstroiki nad diffeomorfizmami i geometriya blizosti”, Usp. mat. nauk, 31:5 (1976), 231–232 | MR

[4] Vainshtein A. G., Lerman L. M., “Ravnomernye struktury i ekvivalentnost diffeomorfizmov”, Mat. zametki, 23:5 (1978), 739–752 | MR

[5] Grines V. Z., Lerman L. M., “Neavtonomnye vektornye polya na $S^3$: prostaya dinamika i dikoe vlozhenie separatris”, Teor. mat. fiz., 212:1 (2022), 15–32 | MR

[6] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differenitsalnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[7] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[8] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978

[9] Lerman L. M., O neavtonomnykh dinamicheskikh sistemakh tipa Morsa–Smeila, Diss. kand. fiz.-mat. nauk, Gork. gos. un-t, Gorkii, 1975

[10] Lerman L. M., Shilnikov L. P., “O klassifikatsii grubykh neavtonomnykh sistem s konechnym chislom yacheek”, Dokl. AN SSSR, 209:3 (1973), 544–547

[11] Morozov A. D., Morozov K. E., “Tranzitornyi sdvig v zadache o flattere”, Nelin. dinamika, 11:3 (2015), 447–457 | MR

[12] Akhmet'ev P. M., Medvedev T. V., Pochinka O. V., “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20 (2021), 76 | DOI | MR

[13] Amerio L., “Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati”, Ann. Mat. Pura Appl., 39 (1955), 97–119 | DOI | MR

[14] Artin E., Fox R., “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR

[15] Barreira L., Valls C., Stability of nonautonomous differential equations, Springer, Berlin–Heidelberg, 2008 | MR

[16] Bochner S., “Sur les fonctions presque périodiques de Bohr”, C. R., 180 (1925), 1156–1158

[17] Bonatti Ch., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR

[18] Bonatti Ch., Grines V., Medvedev V., Pecou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43 (2004), 369–391 | DOI | MR

[19] Bonatti C., Grines V. Z., Pochinka O., “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR

[20] Cerf J., Sur les difféomorphismes de la sphére de dimension trois ($\Gamma_4 = 0$), Springer, Berlin, 1968 | MR

[21] Coppel W. A., Stability and asymptotic behavior of differential equations, D.C. Heath and Company, Boston, 1965 | MR

[22] Corduneanu C., Almost periodic oscillations and waves, Springer, New York, 2009 | MR

[23] Daverman R. J., Venema G. A., Embedding in manifolds, AMS, Providence, 2009 | MR

[24] Favard J., “Sur les eq́uations differentielles á coefficients presqu-periodiques”, Acta Math., 51 (1927), 31–81 | DOI | MR

[25] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions”, Nonlinearity, 21:5 (2008), 923–972 | DOI | MR

[26] Grines V., Medvedev T., Pochinka O., Dynamical systems on 2-and 3-manifolds, Springer, Cham, 2016 | MR

[27] Harrold O. G., Griffith H. C., Posey E. E., “A characterization of tame curves in three-space”, Trans. Am. Math. Soc., 79 (1955), 12–34 | DOI | MR

[28] Lerman L. M., Gubina E. V., “Nonautonomous gradient-like vector fields on the circle: classification, structural stability and autonomization”, Discrete Contin. Dyn. Syst. Ser. S, 13:4 (2020), 1341–1367 | MR

[29] Lerman L. M., Shilnikov L. P., “Homoclinical structures in nonautonomous systems: nonautonomous chaos”, Chaos, 2:3 (1992), 447–454 | DOI | MR

[30] Marcus L., “Asymptotically autonomous differential equations”, Contributions to the Theory of Nonlinear Oscillations. III, Princeton Univ. Press, Princeton, 1956, 17–29 | MR

[31] Massera J. L., Schäffer J. J., Linear differential equations and function spaces, Academic Press, New York–London, 1966 | MR

[32] Mazur B., “A note on some contractible 4-manifolds”, Ann. Math, 73:1 (1961), 221–228 | DOI | MR

[33] Mosovsky B. A., Meiss J. D., “Transport in transitory dynamical systems”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 35–65 | DOI | MR

[34] Newman M. H. A., Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge, 1964 | MR

[35] Perron O., “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32 (1930), 703–728 | DOI | MR

[36] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR

[37] Pochinka O., Shubin D., “On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit”, Appl. Math. Nonlinear Sci. Ser., 5:2 (2020), 261–266 | MR

[38] Sell G., “Nonautonomous differential equations and topological dynamics. I”, Trans. Am. Math. Soc., 127 (1967), 241–262 | MR

[39] Sell G., “Nonautonomous differential equations and topological dynamics. II”, Trans. Am. Math. Soc., 127 (1967), 263–283 | DOI | MR

[40] Smale S., “Morse inequality for a dynamical systems”, Bull. Am. Math. Soc., 66 (1960), 43–49 | DOI | MR