Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 564-574

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of solutions to the problem \begin{equation} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 \text{in } \Omega,\\ u=\mu \text{on } \partial\Omega \end{array} \end{equation} in a bounded domain $\Omega$, where $p>1$, $1$, $M>0$, $\mu$ is a nonnegative Radon measure in $\partial\Omega$, and the associated problem with a boundary isolated singularity at $a\in\partial\Omega,$\begin{equation} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 \text{in } \Omega,\\ u=0 \text{on } \partial\Omega\setminus\{a\}. \end{array} \end{equation} The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to (1) is obtained under a capacitary condition $$ \mu(K)\leq c\min\left\{cap^{\partial\Omega}_{\frac{2}{p},p'},cap^{\partial\Omega}_{\frac{2-q}{q},q'}\right\} \text{for all compacts }K\subset\partial\Omega. $$ Problem (2) depends on several critical exponents on $p$ and $q$ as well as the position of $q$ with respect to $\dfrac{2p}{p+1}$.
Mots-clés : reaction-diffusion equation
Keywords: boundary singular problem, measure as boundary data, isolated boundary singularity.
@article{CMFD_2022_68_4_a1,
     author = {L. V\'eron},
     title = {Boundary singular problems for quasilinear equations involving mixed reaction-diffusion},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {564--574},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/}
}
TY  - JOUR
AU  - L. Véron
TI  - Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 564
EP  - 574
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/
LA  - ru
ID  - CMFD_2022_68_4_a1
ER  - 
%0 Journal Article
%A L. Véron
%T Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 564-574
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/
%G ru
%F CMFD_2022_68_4_a1
L. Véron. Boundary singular problems for quasilinear equations involving mixed reaction-diffusion. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 564-574. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/