Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 564-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of solutions to the problem \begin{equation} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 \text{in } \Omega,\\ u=\mu \text{on } \partial\Omega \end{array} \end{equation} in a bounded domain $\Omega$, where $p>1$, $1$, $M>0$, $\mu$ is a nonnegative Radon measure in $\partial\Omega$, and the associated problem with a boundary isolated singularity at $a\in\partial\Omega,$\begin{equation} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 \text{in } \Omega,\\ u=0 \text{on } \partial\Omega\setminus\{a\}. \end{array} \end{equation} The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to (1) is obtained under a capacitary condition $$ \mu(K)\leq c\min\left\{cap^{\partial\Omega}_{\frac{2}{p},p'},cap^{\partial\Omega}_{\frac{2-q}{q},q'}\right\} \text{for all compacts }K\subset\partial\Omega. $$ Problem (2) depends on several critical exponents on $p$ and $q$ as well as the position of $q$ with respect to $\dfrac{2p}{p+1}$.
Mots-clés : reaction-diffusion equation
Keywords: boundary singular problem, measure as boundary data, isolated boundary singularity.
@article{CMFD_2022_68_4_a1,
     author = {L. V\'eron},
     title = {Boundary singular problems for quasilinear equations involving mixed reaction-diffusion},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {564--574},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/}
}
TY  - JOUR
AU  - L. Véron
TI  - Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 564
EP  - 574
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/
LA  - ru
ID  - CMFD_2022_68_4_a1
ER  - 
%0 Journal Article
%A L. Véron
%T Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 564-574
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/
%G ru
%F CMFD_2022_68_4_a1
L. Véron. Boundary singular problems for quasilinear equations involving mixed reaction-diffusion. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 564-574. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a1/

[1] Adams D., Hedberg L., Function spaces and potential theory, Springer, London—Berlin—Heidelberg—New York, 1996 | MR

[2] Adams D. R., Pierre M., “Capacitary strong type estimates in semilinear problems”, Ann. Inst. Fourier $($Grenoble$)$, 41 (1991), 117–135 | DOI | MR

[3] Alarcón S., García-Melián J., Quaas A., “Nonexistence of positive supersolutions to some nonlinear elliptic problems”, J. Math. Pures Appl, 90 (2013), 618–634 | DOI | MR

[4] Baras P., Pierre M., “Singularités éliminable pour des équations semi-linéaires”, Ann. Inst. Fourier, 34:1 (1984), 185–206 | DOI | MR

[5] Bidaut-Véron M. F., Garcia-Huidobro M., Véron L., “A priori estimates for elliptic equations with reaction terms involving the function and its gradient”, Math. Ann, 378 (2020), 13–58 | DOI | MR

[6] Bidaut-Véron M. F., Garcia-Huidobro M., Véron L., “Measure data problems for a class of elliptic equations with mixed absorption-reaction”, Adv. Nonlinear. Stud, 21 (2020), 261–280 | DOI | MR

[7] Bidaut-Véron M. F., Garcia-Huidobro M., Véron L., “Boundary singular solutions of a class of equations with mixed absorption-reaction”, Calc. Var. Part. Differ. Equ, 61:3 (2022), 113 | DOI | MR

[8] Bidaut-Véron M. F., Hoang G., Nguyen Q. H., Véron L., “An elliptic semilinear equation with source term and boundary measure data: the supercritical case”, J. Funct. Anal, 269 (2015), 1995–2017 | DOI | MR

[9] Bidaut-Véron M. F., Ponce A., Véron L., “Isolated boundary singularities of semilinear elliptic equations”, Calc. Var. Part. Differ. Equ, 40 (2011), 183–221 | DOI | MR

[10] Bidaut-Véron M. F., Véron L., “Trace and boundary singularities of positive solutions of a class of quasilinear equations”, Discr. Cont. Dyn. Syst, 2022 (to appear)

[11] Boccardo L., Murat F., Puel J. P., “Résultats d'existence pour certains problèmes elliptiques quasilinéaires”, Ann. Sc. Norm. Super. Pisa Cl. Sci. $(4)$, 11 (1984), 213–235 | MR

[12] Doob J. L., Classical Potential Theory and Its Probabilistic Counterpart, Springer, London—Berlin—Heidelberg—New York, 1984 | MR

[13] Gidas B., Spruck J., “Global and local behaviour of positive solutions of nonlinear elliptic equations”, Commun. Pure Appl. Math, 34 (1981), 525–598 | DOI | MR

[14] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer, London—Berlin—Heidelberg—New York, 1983 | MR

[15] Gmira A., Véron L., “Boundary singularities of solutions of some nonlinear elliptic equations”, Duke Math. J., 64 (1991), 271–324 | DOI | MR

[16] Marcus M., Nguyen P. T., “Elliptic equations with nonlinear absorption depending on the solution and its gradient”, Proc. Lond. Math. Soc, 111 (2015), 205–239 | DOI | MR

[17] Marcus M., Véron L., “The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case”, Arch. Ration. Mech. Anal, 144 (1998), 200–231 | DOI | MR

[18] Marcus M., Véron L., “Removable singularities and boundary traces”, J. Math. Pures Appl, 80 (2001), 879–900 | DOI | MR

[19] Marcus M., Véron L., Nonlinear elliptic equations involving measures, de Gruyter, Berlin, 2014 | MR

[20] Nguyen P. T., Véron L., “Boundary singularities of solutions to elliptic viscous Hamilton—Jacobi equations”, J. Funct. Anal, 263 (2012), 1487–1538 | DOI | MR

[21] Véron L., “Singular solutions of some nonlinear elliptic equations”, Nonlinear Anal, 5 (1981), 225–242 | DOI | MR

[22] Véron L., Local and global aspects of quasilinear degenerate elliptic equations, World Scientific, Hackensack, 2017 | MR