Models of self-adjoint and unitary operators in Pontryagin spaces
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 522-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper represents a revised version of the lectures, delivered by the author at KROMSH-2019. These lectures are devoted to describing a few different ways of constructing a model representation for self-adjoint and unitary operators acting in Pontryagin spaces, and a comparison between them. Two of these models are based on the regularized integral Krein–Langer representation of a numerical sequence generated by the powers of a self-adjoint (in the sense of Pontryagin spaces) operator. The steps to deduce both this representation and the spectral function of the corresponding operator are given. In both models (first of which belongs to the author of this paper), the operator is realized as an operator of multiplication by an independent variable, but the space of functions in which it acts is different for each of the models. The third model, introduced by V. S. Shulman, is based on his own concept of a quasi-vector.
@article{CMFD_2022_68_3_a7,
     author = {V. A. Strauss},
     title = {Models of self-adjoint and unitary operators in {Pontryagin} spaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {522--552},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a7/}
}
TY  - JOUR
AU  - V. A. Strauss
TI  - Models of self-adjoint and unitary operators in Pontryagin spaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 522
EP  - 552
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a7/
LA  - ru
ID  - CMFD_2022_68_3_a7
ER  - 
%0 Journal Article
%A V. A. Strauss
%T Models of self-adjoint and unitary operators in Pontryagin spaces
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 522-552
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a7/
%G ru
%F CMFD_2022_68_3_a7
V. A. Strauss. Models of self-adjoint and unitary operators in Pontryagin spaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 522-552. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a7/

[1] Azizov T. Ya., Iokhvidov I. S., “Lineinye operatory v gilbertovykh prostranstvakh s $G$-metrikoi”, Usp. mat. nauk, 26:4 (1971), 43–92 | MR | Zbl

[2] Azizov T. Ya., Iokhvidov I. S., “Lineinye operatory v prostranstvakh s indefinitnoi metrikoi i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Mat. anal., 17, 1979, 113–205 | MR

[3] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[4] Azizov T. Ya., Kopachevskii N. D., Vvedenie v teoriyu prostranstv Pontryagina: spetsialnyi kurs lektsii, TNU, Simferopol, 2008

[5] Azizov T. Ya., Kopachevskii N. D., Vvedenie v teoriyu prostranstv Kreina: spetsialnyi kurs lektsii, OOO «FORMA», Simferopol, 2010

[6] Aronshain N., “Kvadratichnye formy na vektornykh prostranstvakh”, Matematika, 8:5 (1964), 102–155

[7] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961

[8] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR

[9] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uch. zap. MGU, 148 (1951), 69–107

[10] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980

[11] Bogachev V. I., Kurs lektsii po deistvitelnomu analizu, MGU, M., 2008

[12] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR

[13] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[14] Gokhman E. Kh., Integral Stiltesa i ego prilozheniya, Fizmatgiz, M., 1958

[15] Danford N., Shvarts Dzh., Lineinye operatory, v. 3, Spektralnye operatory, Mir, M., 1974

[16] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, FML, M., 1960

[17] Maltsev A. I., Osnovy lineinoi algebry, Lan, SPb, 2009 | MR

[18] Naimark M. A., Normirovannye koltsa, Fizmatlit, M., 2010 | MR

[19] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR

[20] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[21] Sevastyanov B. A., Kurs teorii veroyatnostei i matematicheskoi statistiki, Nauka, M., 1982 | MR

[22] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970

[23] Shtraus V. A., “Nekotorye osobennosti spektralnoi funktsii $\pi$-samosopryazhennogo operatora”, Funktsionalnyi analiz. Teoriya operatorov, 21, UGPI, Ulyanovsk, 1983, 135–146 | MR

[24] Shtraus V. A., “Modelnoe predstavlenie prosteishego $\pi $-samosopryazhennogo operatora”, Funktsionalnyi analiz. Spektralnaya teoriya, 22, UGPI, Ulyanovsk, 1984, 123–133

[25] Shtraus V. A., “Funktsionalnoe predstavlenie algebry, porozhdennoi samosopryazhennym operatorom v prostranstve Pontryagina”, Funkts. analiz i ego prilozh., 20:1 (1986), 91–92 | MR | Zbl

[26] Shtraus V. A., “Funktsionalnoe predstavlenie operatorov, dvazhdy perestanovochnykh s samosopryazhennym operatorom v prostranstve Pontryagina”, Sib. mat. zh., 29:6 (1988), 176–184 | MR

[27] Shulman V. S., “Banakhovy simmetrichnye algebry operatorov v prostranstve tipa $\Pi_1$”, Mat. sb., 89:2 (1972), 264–279

[28] Azizov T. Ya., Strauss V. A., “Spectral decompositions for special classes of self-adjoint and normal operators on Krein spaces”, Spectral Theory and Its Applications (Theta, 2003), 45–67 | MR | Zbl

[29] Azizov T. Ya., Strauss V. A., “On a spectral decomposition of a commutative operator family in spaces with indefinite metric”, Methods Funct. Anal. Topol., 11:1 (2005), 10–20 | MR | Zbl

[30] Bendersky A. Y., Litvinov S. N., Chilin V. I., “A description of commutative symmetric operator algebras in a Pontryagin space $\pi_1$”, J. Operator Theory, 37 (1997), 201–222 | MR | Zbl

[31] Colojoară I., Foiaş C., Theory of Generalized Spectral Operators, Gordon and Breach, New York, etc, 1968 | MR | Zbl

[32] Holtz O., Strauss V., “Classification of normal operators in spaces with indefinite scalar product of rank-2”, Linear Algebra Appl., 241–243 (1996), 455–517 | DOI | MR | Zbl

[33] Jonas P., Langer H., Textorius B., “Models and unitary equivalence of cyclic selfadjoint operators in Pontrjagin spaces”, Workshop on Operator Theory and Complex Analysis (Sapporo, Japan, June 1991), Birkhäuser, Basel, 1992, 252–284 | DOI | MR | Zbl

[34] Kissin E., Shulman V., Representations of Krein spaces and derivations of $C^*$-algebras, Addison-Wesley Longman, US, 1997 | MR

[35] Langer H., Spectraltheorie linearer Operatoren in $J$-räumen und enige Anwendungen auf die Shar $L(\lambda )=\lambda ^{2}I+\lambda B+C$, Habilitationsschrift, Dresden Tech. Univ., Dresden, 1965

[36] Langer H., “Spectral functions of definitizable operators in Krein space”, Lecture Notes in Math., 948, 1982, 1–46 | DOI | MR | Zbl

[37] Strauss V., “A functional description for the commutative $WJ^*$-algebras for the $D_{\kappa }^+$-class”, Operator Theory and Indefinite Inner Product Spaces, Birkhäuser, Basel, 2006, 299–335 | DOI | MR | Zbl

[38] Strauss V., “Models of function type for commutative symmetric operator families in Krein spaces”, Abstr. Appl. Anal., 2008 (2008), 439781 | DOI | MR | Zbl

[39] Strauss V., “On a commutative $WJ^*$-algebra of $D_1^+$-class and its bicommutant”, Oper. Matrices, 5:4 (2011), 585–617 | DOI | MR | Zbl

[40] Strauss V., “On the weakly closed algebra generated by a unitary operator in a Pontryagin space”, Oper. Matrices, 12:3 (2018), 837–853 | DOI | MR | Zbl