Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 509-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of reaction–diffusion–advection equations describing the evolution of the spatial distributions of two populations of predators and two prey populations. This model allows us to consider directed migration, the Holling functional response of the second kind, and the hyperbolic prey growth function. We obtain conditions on the parameters under which cosymmetries exist. As a result, multistability is realized, i.e., the one- and two-parameter families of stationary solutions appear. For a homogeneous environment, we analytically derive explicit formulas for equilibria. With a heterogeneous habitat, we computed distributions of species using the method of lines and the scheme of staggered grids. We present the results of violation of cosymmetry and transformation of the family in the case of invasion of a predator.
@article{CMFD_2022_68_3_a6,
     author = {T. D. Ha and V. G. Tsybulin},
     title = {Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {509--521},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/}
}
TY  - JOUR
AU  - T. D. Ha
AU  - V. G. Tsybulin
TI  - Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 509
EP  - 521
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/
LA  - ru
ID  - CMFD_2022_68_3_a6
ER  - 
%0 Journal Article
%A T. D. Ha
%A V. G. Tsybulin
%T Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 509-521
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/
%G ru
%F CMFD_2022_68_3_a6
T. D. Ha; V. G. Tsybulin. Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 509-521. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/

[1] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, In-t komp. issl., Izhevsk, 2003

[2] Epifanov A. V., Tsibulin V. G., “O dinamike kosimmetrichnykh sistem khischnikov i zhertv”, Komp. issl. i model., 9:5 (2017), 799–813

[3] Kurakin L. G., Yudovich V. I., “Primenenie metoda Lyapunova—Shmidta v zadache otvetvleniya tsikla ot semeistva ravnovesii sistemy s multikosimmetriei”, Sib. mat. zh., 41:1 (2000), 136–149 | MR | Zbl

[4] Myurrei Dzh., Matematicheskaya biologiya, v. 1, In-t komp. issl., M.—Izhevsk, 2011

[5] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR

[6] Kha T. D., Tsibulin V. G., “Multistabilnye stsenarii dlya differentsialnykh uravnenii, opisyvayuschikh dinamiku sistemy khischnikov i zhertv”, Komp. issl. i model., 12:6 (2020), 1451–1466

[7] Kha T. D., Tsibulin V. G., “Uravneniya diffuzii—reaktsii—advektsii dlya sistemy khischnik—zhertva v geterogennoi srede”, Komp. issl. i model., 13:6 (2021), 1161–1176

[8] Tsibulin V. G., Kha T. D., Zelenchuk P. A., “Nelineinaya dinamika sistemy khischnik—zhertva na neodnorodnom areale i stsenarii lokalnogo vzaimodeistviya vidov”, Izv. vuzov. Prikl. nelin. dinam., 29:5 (2021), 751–764

[9] Yudovich V. I., “Kosimmetriya, vyrozhdenie reshenii operatornykh uravnenii, vozniknovenie filtratsionnoi konvektsii”, Mat. zametki, 49:5 (1991), 142–148 | MR | Zbl

[10] Yudovich V. I., “O bifurkatsiyakh pri vozmuscheniyakh, narushayuschikh kosimmetriyu”, Dokl. RAN, 398:1 (2004), 57–61

[11] Bluman G. W., Kumei S., Symmetries and Differential Equations, Springer, Berlin, 2013 | MR

[12] Budyansky A. V., Frischmuth K., Tsybulin V. G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 547–561 | MR | Zbl

[13] Cosner C., Cantrell R., Spatial Ecology Via Reaction–Diffusion Equations, John Wiley Sons Ltd, Chichester, 2003 | MR | Zbl

[14] Feudel U., “Complex dynamics in multistable systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1607–1626 | DOI | MR

[15] Frischmuth K., Budyansky A. V., Tsybulin V. G., “Modeling of invasion on a heterogeneous habitat: taxis and multistability”, Appl. Math. Comput., 410 (2021), 126456 | MR | Zbl

[16] Frischmuth K., Kovaleva E. S., Tsybulin V. G., “Family of equilibria in a population kinetics model and its collapse”, Nonlinear Anal., 12 (2011), 146–155 | DOI | MR | Zbl

[17] Holling C. S., “Some characteristics of simple types of predation and parasitism”, Can. Entomologist., 91 (1959), 385–398 | DOI

[18] Ibragimov N. H., A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods, World Scientific, Singapore, 2010 | MR | Zbl

[19] Kim K., Choi W., “Local dynamics and coexistence of predator–prey model with directional dispersal of predator”, Math. Biosci. Eng., 17 (2020), 6737–6755 | DOI | MR | Zbl

[20] Rubin A., Riznichenko G., Mathematical Biophysics, Springer, New York, 2014 | Zbl

[21] Tyutyunov Y. V., Zagrebneva A. D., Azovsky A. I., “Spatiotemporal pattern formation in a prey–predator system: The case study of short-term interactions between diatom microalgae and microcrustaceans”, Mathematics, 8:7 (2020), 1065–1079 | DOI

[22] Yudovich V. I., “Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it”, Chaos, 5:2 (1995), 402–411 | DOI | MR | Zbl