Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_3_a6, author = {T. D. Ha and V. G. Tsybulin}, title = {Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {509--521}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/} }
TY - JOUR AU - T. D. Ha AU - V. G. Tsybulin TI - Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 509 EP - 521 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/ LA - ru ID - CMFD_2022_68_3_a6 ER -
%0 Journal Article %A T. D. Ha %A V. G. Tsybulin %T Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 509-521 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/ %G ru %F CMFD_2022_68_3_a6
T. D. Ha; V. G. Tsybulin. Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 509-521. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a6/
[1] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, In-t komp. issl., Izhevsk, 2003
[2] Epifanov A. V., Tsibulin V. G., “O dinamike kosimmetrichnykh sistem khischnikov i zhertv”, Komp. issl. i model., 9:5 (2017), 799–813
[3] Kurakin L. G., Yudovich V. I., “Primenenie metoda Lyapunova—Shmidta v zadache otvetvleniya tsikla ot semeistva ravnovesii sistemy s multikosimmetriei”, Sib. mat. zh., 41:1 (2000), 136–149 | MR | Zbl
[4] Myurrei Dzh., Matematicheskaya biologiya, v. 1, In-t komp. issl., M.—Izhevsk, 2011
[5] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR
[6] Kha T. D., Tsibulin V. G., “Multistabilnye stsenarii dlya differentsialnykh uravnenii, opisyvayuschikh dinamiku sistemy khischnikov i zhertv”, Komp. issl. i model., 12:6 (2020), 1451–1466
[7] Kha T. D., Tsibulin V. G., “Uravneniya diffuzii—reaktsii—advektsii dlya sistemy khischnik—zhertva v geterogennoi srede”, Komp. issl. i model., 13:6 (2021), 1161–1176
[8] Tsibulin V. G., Kha T. D., Zelenchuk P. A., “Nelineinaya dinamika sistemy khischnik—zhertva na neodnorodnom areale i stsenarii lokalnogo vzaimodeistviya vidov”, Izv. vuzov. Prikl. nelin. dinam., 29:5 (2021), 751–764
[9] Yudovich V. I., “Kosimmetriya, vyrozhdenie reshenii operatornykh uravnenii, vozniknovenie filtratsionnoi konvektsii”, Mat. zametki, 49:5 (1991), 142–148 | MR | Zbl
[10] Yudovich V. I., “O bifurkatsiyakh pri vozmuscheniyakh, narushayuschikh kosimmetriyu”, Dokl. RAN, 398:1 (2004), 57–61
[11] Bluman G. W., Kumei S., Symmetries and Differential Equations, Springer, Berlin, 2013 | MR
[12] Budyansky A. V., Frischmuth K., Tsybulin V. G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 547–561 | MR | Zbl
[13] Cosner C., Cantrell R., Spatial Ecology Via Reaction–Diffusion Equations, John Wiley Sons Ltd, Chichester, 2003 | MR | Zbl
[14] Feudel U., “Complex dynamics in multistable systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:6 (2008), 1607–1626 | DOI | MR
[15] Frischmuth K., Budyansky A. V., Tsybulin V. G., “Modeling of invasion on a heterogeneous habitat: taxis and multistability”, Appl. Math. Comput., 410 (2021), 126456 | MR | Zbl
[16] Frischmuth K., Kovaleva E. S., Tsybulin V. G., “Family of equilibria in a population kinetics model and its collapse”, Nonlinear Anal., 12 (2011), 146–155 | DOI | MR | Zbl
[17] Holling C. S., “Some characteristics of simple types of predation and parasitism”, Can. Entomologist., 91 (1959), 385–398 | DOI
[18] Ibragimov N. H., A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods, World Scientific, Singapore, 2010 | MR | Zbl
[19] Kim K., Choi W., “Local dynamics and coexistence of predator–prey model with directional dispersal of predator”, Math. Biosci. Eng., 17 (2020), 6737–6755 | DOI | MR | Zbl
[20] Rubin A., Riznichenko G., Mathematical Biophysics, Springer, New York, 2014 | Zbl
[21] Tyutyunov Y. V., Zagrebneva A. D., Azovsky A. I., “Spatiotemporal pattern formation in a prey–predator system: The case study of short-term interactions between diatom microalgae and microcrustaceans”, Mathematics, 8:7 (2020), 1065–1079 | DOI
[22] Yudovich V. I., “Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it”, Chaos, 5:2 (1995), 402–411 | DOI | MR | Zbl