Optimal control of the behavior of solutions to an initial-boundary value problem arising in the mechanics of discrete-continuum systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 488-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2022_68_3_a5,
     author = {E. P. Kubyshkin},
     title = {Optimal control of the behavior of solutions to an initial-boundary value problem arising in the mechanics of discrete-continuum systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {488--508},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a5/}
}
TY  - JOUR
AU  - E. P. Kubyshkin
TI  - Optimal control of the behavior of solutions to an initial-boundary value problem arising in the mechanics of discrete-continuum systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 488
EP  - 508
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a5/
LA  - ru
ID  - CMFD_2022_68_3_a5
ER  - 
%0 Journal Article
%A E. P. Kubyshkin
%T Optimal control of the behavior of solutions to an initial-boundary value problem arising in the mechanics of discrete-continuum systems
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 488-508
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a5/
%G ru
%F CMFD_2022_68_3_a5
E. P. Kubyshkin. Optimal control of the behavior of solutions to an initial-boundary value problem arising in the mechanics of discrete-continuum systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 488-508. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a5/

[1] Andreichenko D. K., Andreichenko K. P., “K teorii stabilizatsii sputnikov s uprugimi sterzhnyami”, Izv. RAN. Teor. i sist. uprav., 2004, no. 6, 150–163 | MR | Zbl

[2] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR

[3] Berbyuk V. E., Dinamika i optimizatsiya robototekhnicheskikh sistem, Naukova dumka, Kiev, 1989

[4] Voititskii V. I., Zlobina M. Yu., Kubyshkin E. P., “O spektralnoi zadache, voznikayuschei v mekhanike manipulyatsionnykh robotov”, Model. i analiz inf. sist., 16:3 (2009), 22–28

[5] Garnikhina M. Yu., Kubyshkin E. P., “Optimalnoe upravlenie povorotom tverdogo tela s nasledstvenno vyazkouprugim sterzhnem”, Izv. RAN. Mekh. tv. tela, 2006, no. 5, 29–41

[6] Zelikin M. I., Manita L. A., “Nakoplenie pereklyuchenii upravleniya v zadachakh s raspredelennymi parametrami”, Sovrem. mat. Fundam. Napravl., 19, 2006, 78–113

[7] Zlochevskii S. I., Kubyshkin E. P., “O vliyanii kolebanii uprugikh elementov s raspredelennymi massami na orientatsiyu sputnika”, Kosm. issled., 25:4 (1987), 537–544

[8] Zlochevskii S. I., Kubyshkin E. P., “O stabilizatsii sputnika s gibkimi sterzhnyami”, Kosm. issled., 27:5 (1989), 643–651 | MR

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nev. dialekt, SPb., 2004 | MR

[10] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[11] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[12] Kubyshkin E. P., “Optimalnoe upravlenie povorotom tverdogo tela s gibkim sterzhnem”, Prikl. mat. mekh., 56:2 (1992), 240–249 | MR | Zbl

[13] Kubyshkin E. P., “Optimalnoe upravlenie povorotom sistemy dvukh tel, soedinennykh uprugim sterzhnem”, Prikl. mat. mekh., 78:5 (2014), 656–670 | MR | Zbl

[14] Kubyshkin E. P., Solodovnikov P. A., “Ob odnom algoritme optimalnogo upravleniya povorotom tverdogo diska s uprugim sterzhnem”, Dinam. sist., 6:2 (2016), 95–108

[15] Kubyshkin E. P., Tryakhov M. S., “Optimalnoe upravlenie povedeniem reshenii nachalno-kraevoi zadachi, modeliruyuschei vraschenie tverdogo tela s uprugim sterzhnem”, Model. i analiz inf. sist., 21:5 (2014), 72–92

[16] Kubyshkin E. P., Khrebtyugova O. A., “Obobschennoe reshenie odnoi nachalno-kraevoi zadachi, voznikayuschei v mekhanike diskretno-kontinualnykh sistem”, Model. i analiz inf. sist., 2012, no. 1, 84–96

[17] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[18] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR

[19] Russkikh S. V., “Upravlyaemyi povorot kosmicheskogo apparata s uprugimi panelyami solnechnykh batarei”, Izv. vuzov. Ser. Mashinostr., 12 (2016), 97–105

[20] Chelomei V. N. (gl. red.) i dr., Vibratsii v tekhnike. Spravochnik, v. 1, Mashinostroenie, M., 1978

[21] Chernousko F. L., Bolotnik N. N., Gradetskii V. G., Manipulyatsionnye roboty, Nauka, M., 1989 | MR

[22] Gugat M., “Controllability of a slowly rotating Timoshenko beam”, ESAIM Control Optim. Calc. Var., 6 (2001), 333–360 | DOI | MR | Zbl

[23] Krabs W., Sklyar G. M., “On the stabilizability of a slowly rotating Timoshenko beam”, Z. Anal. Anwend., 19:1 (2000), 131–145 | DOI | MR | Zbl

[24] Krabs W., Sklyar G. M., Wozniak J., “On the set of reachable states in the problem of controllability of rotating Timoshenko beams”, J. Anal. Appl., 22:1 (2003), 215–228 | MR | Zbl

[25] Sakawa Y., Ito R., Fujii N., “Optimal control of rotation of a flexible arm”, Control Theory for Distributed Parameter Systems and Applications, 1983, 175–187 | DOI | MR | Zbl