Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_3_a4, author = {V. E. Kruglov and O. V. Pochinka}, title = {Topological conjugacy of gradient-like flows on surfaces and efficient algorithms for its distinguition}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {467--487}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a4/} }
TY - JOUR AU - V. E. Kruglov AU - O. V. Pochinka TI - Topological conjugacy of gradient-like flows on surfaces and efficient algorithms for its distinguition JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 467 EP - 487 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a4/ LA - ru ID - CMFD_2022_68_3_a4 ER -
%0 Journal Article %A V. E. Kruglov %A O. V. Pochinka %T Topological conjugacy of gradient-like flows on surfaces and efficient algorithms for its distinguition %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 467-487 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a4/ %G ru %F CMFD_2022_68_3_a4
V. E. Kruglov; O. V. Pochinka. Topological conjugacy of gradient-like flows on surfaces and efficient algorithms for its distinguition. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 467-487. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a4/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250
[2] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. AN SSSR, 14:5 (1937), 251–257
[3] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. AN SSSR, 103:4 (1955), 557–560 | Zbl
[4] Maier A. G., “Grubye preobrazovaniya okruzhnosti”, Uch. zap. GGU, 12 (1939), 215–229
[5] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa—Smeila na dvumernykh mnogoobraziyakh”, Mat. sb., 189:8 (1998), 93–140 | MR | Zbl
[6] Palis Zh., Di Melu V., Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986
[7] Fleitas G., “Classification of gradiet-like flows on dimensions two and three”, Bol. Soc. Bras. Mat., 6 (1975), 155–183 | DOI | MR | Zbl
[8] Grines V., Medvedev T., Pochinka O., Dynamical Systems on 2- and 3-Manifolds, Springer, Cham, 2016 | MR | Zbl
[9] Hopcroft J. E., Wong J. K., “Linear time algorithm for isomorphism of planar graphs: preliminary report”, Proc. of the 6th Annual ACM Symposium on Theory of Computing (Seattle, 1974), 172–184 | MR | Zbl
[10] Kruglov V., “Topological conjugacy of gradient-like flows on surfaces”, Dinam. sist., 8:1 (2018), 15–21 | Zbl
[11] Kruglov V., Malyshev D., Pochinka O., “On algorithms that effectively distinguish gradient-like dynamics on surfaces”, Arnold Math. J., 4:3-4 (2018), 483–504 | DOI | MR | Zbl
[12] Miller G., “Isomorphism testing for graphs of bounded genus”, Proceedings of the 12th Annual ACM Symposium on Theory of Computing, The Association for Computing Machinery, New York, 1980, 225–235
[13] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl
[14] Peixoto M., “Structural stability on two-dimensional manifolds (a further remarks)”, Topology, 2:2 (1963), 179–180 | DOI | MR | Zbl
[15] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical Syst., Proc. Sympos. (Univ. Bahia, Salvador, 1971), 1973, 389–419 | MR | Zbl
[16] Pugh C., Shub M., “The $\Omega$-stability theorem for flows”, Invent. Math., 11:2 (1970), 150–158 | DOI | MR | Zbl
[17] Robinson C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1999 | MR | Zbl
[18] Smale S., “Differentiable dynamical systems”, Bull. Am. Math. Soc., 73 (1967), 747–817 | DOI | MR | Zbl
[19] Wang X., “The $C^*$-algebras of Morse—Smale flows on two-manifolds”, Ergodic Theory Dynam. Sytems, 10 (1990), 565–597 | DOI | MR | Zbl