Asymptotic behavior of solutions of a complete second-order integro-differential equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study a complete second-order integro-differential operator equation in a Hilbert space. The difference-type kernel of an integral perturbation is a holomorphic semigroup bordered by unbounded operators. The asymptotic behavior of solutions of this equation is studied. Asymptotic formulas for solutions are proved in the case when the right-hand side is close to an almost periodic function. The obtained formulas are applied to the study of the problem of forced longitudinal vibrations of a viscoelastic rod with Kelvin–Voigt friction.
@article{CMFD_2022_68_3_a3,
author = {D. A. Zakora},
title = {Asymptotic behavior of solutions of a complete second-order integro-differential equation},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {451--466},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/}
}
TY - JOUR AU - D. A. Zakora TI - Asymptotic behavior of solutions of a complete second-order integro-differential equation JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 451 EP - 466 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/ LA - ru ID - CMFD_2022_68_3_a3 ER -
%0 Journal Article %A D. A. Zakora %T Asymptotic behavior of solutions of a complete second-order integro-differential equation %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 451-466 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/ %G ru %F CMFD_2022_68_3_a3
D. A. Zakora. Asymptotic behavior of solutions of a complete second-order integro-differential equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/