Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_3_a3, author = {D. A. Zakora}, title = {Asymptotic behavior of solutions of a complete second-order integro-differential equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {451--466}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/} }
TY - JOUR AU - D. A. Zakora TI - Asymptotic behavior of solutions of a complete second-order integro-differential equation JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 451 EP - 466 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/ LA - ru ID - CMFD_2022_68_3_a3 ER -
%0 Journal Article %A D. A. Zakora %T Asymptotic behavior of solutions of a complete second-order integro-differential equation %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 451-466 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/ %G ru %F CMFD_2022_68_3_a3
D. A. Zakora. Asymptotic behavior of solutions of a complete second-order integro-differential equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/
[1] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016
[2] Vlasov V. V., Rautian N. A., “Eksponentsialnaya ustoichivost polugrupp, porozhdaemykh volterrovymi integro-differentsialnymi uravneniyami s singulyarnymi yadrami”, Diff. uravn., 57:10 (2021), 1426–1430 | Zbl
[3] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR
[4] Zakora D. A., “Eksponentsialnaya ustoichivost odnoi polugruppy i prilozheniya”, Mat. zametki, 103:5 (2018), 702–719 | MR | Zbl
[5] Zakora D. A., “Asimptotika reshenii v zadache o malykh dvizheniyakh szhimaemoi zhidkosti Maksvella”, Diff. uravn., 55:9 (2019), 1195–1208 | Zbl
[6] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazko-uprugosti, Nauka, M., 1970 | MR
[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[8] Krein C. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[9] Alabau-Boussouria F., Cannarsa P., “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Math. Acad. Sci. Paris, 347 (2009), 867–872 | DOI | MR
[10] Alabau-Boussouria F., Cannarsa P., Sforza D., “Decay estimates for second order evolution equations with memory”, J. Funct. Anal., 254 (2008), 1342–1372 | DOI | MR
[11] Ammar-Khodja F., Benabdallah A., Muñoz Rivera J. E., Racke R., “Energy decay for Timoshenko systems of memory type”, J. Differ. Equ., 194:1 (2003), 82–115 | DOI | MR | Zbl
[12] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of Materials with Memory, Springer, Boston, 2012 | MR | Zbl
[13] Dafermos C. M., “Asymptotic stability in viscoelasticity”, Arch. Ration. Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl
[14] Dafermos C. M., “An abstract Volterra equation with applications to linear viscoelasticity”, J. Differ. Equ., 7:3 (1970), 554–569 | DOI | MR | Zbl
[15] Dell'Oro F., “Asymptotic stability of thermoelastic systems of Bresse type”, J. Differ. Equ., 258:11 (2015), 3902–3927 | DOI | MR | Zbl
[16] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Eqations, Springer, New York, 2000 | MR
[17] Fabrizio M., Morro A., Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992 | MR | Zbl
[18] Fatori L. H., Monteiro R. N., Sare H. D. F., “The Timoshenko system with history and Cattaneo law”, Appl. Math. Comput., 228:1 (2014), 128–140 | MR | Zbl
[19] Liu Z., Zheng S., Semigroups Associated with Dissipative Systems, Chapman Hall/CRC, London, 1999 | MR | Zbl
[20] Ma Z., Zhang L., Yang X., “Exponential stability for a Timoshenko-type system with history”, J. Math. Anal. Appl., 380:1 (2011), 299–312 | DOI | MR | Zbl
[21] Messaoudi S. A., Apalara T. A., “General stability result in a memory-type porous thermoelasticity system of type III”, Arab J. Math. Sci., 20:2 (2014), 213–232 | MR | Zbl
[22] Muñoz Rivera J. E., Naso M. G., “Asymptotic stability of semigroups associated with linear weak dissipative systems with memory”, J. Math. Anal. Appl., 326 (2007), 691–707 | DOI | MR | Zbl
[23] Pandolfi L., Linear systems with persistent memory: An overview of the biblography on controllability, 2018, arXiv: 1804.01865 [math.OC]
[24] Racke R., Said-Houari B., “Global existence and decay property of the Timoshenko system in thermoelasticity with second sound”, Nonlinear Anal., 75:13 (2012), 4957–4973 | DOI | MR | Zbl
[25] Renardy M., Hrusa W. J., Nohel J. A., Mathematical problems in viscoelasticity, Longman Scientific Technical, Harlow, 1987 | MR | Zbl
[26] Zakora D., “On the spectrum of rotating viscous relaxing fluid”, Zhurn. mat. fiz. anal. geom., 12:4 (2016), 338–358 | MR | Zbl