Asymptotic behavior of solutions of a complete second-order integro-differential equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a complete second-order integro-differential operator equation in a Hilbert space. The difference-type kernel of an integral perturbation is a holomorphic semigroup bordered by unbounded operators. The asymptotic behavior of solutions of this equation is studied. Asymptotic formulas for solutions are proved in the case when the right-hand side is close to an almost periodic function. The obtained formulas are applied to the study of the problem of forced longitudinal vibrations of a viscoelastic rod with Kelvin–Voigt friction.
@article{CMFD_2022_68_3_a3,
     author = {D. A. Zakora},
     title = {Asymptotic behavior of solutions of a complete second-order integro-differential equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {451--466},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Asymptotic behavior of solutions of a complete second-order integro-differential equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 451
EP  - 466
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/
LA  - ru
ID  - CMFD_2022_68_3_a3
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Asymptotic behavior of solutions of a complete second-order integro-differential equation
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 451-466
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/
%G ru
%F CMFD_2022_68_3_a3
D. A. Zakora. Asymptotic behavior of solutions of a complete second-order integro-differential equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/