Asymptotic behavior of solutions of a complete second-order integro-differential equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a complete second-order integro-differential operator equation in a Hilbert space. The difference-type kernel of an integral perturbation is a holomorphic semigroup bordered by unbounded operators. The asymptotic behavior of solutions of this equation is studied. Asymptotic formulas for solutions are proved in the case when the right-hand side is close to an almost periodic function. The obtained formulas are applied to the study of the problem of forced longitudinal vibrations of a viscoelastic rod with Kelvin–Voigt friction.
@article{CMFD_2022_68_3_a3,
     author = {D. A. Zakora},
     title = {Asymptotic behavior of solutions of a complete second-order integro-differential equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {451--466},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Asymptotic behavior of solutions of a complete second-order integro-differential equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 451
EP  - 466
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/
LA  - ru
ID  - CMFD_2022_68_3_a3
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Asymptotic behavior of solutions of a complete second-order integro-differential equation
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 451-466
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/
%G ru
%F CMFD_2022_68_3_a3
D. A. Zakora. Asymptotic behavior of solutions of a complete second-order integro-differential equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a3/

[1] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[2] Vlasov V. V., Rautian N. A., “Eksponentsialnaya ustoichivost polugrupp, porozhdaemykh volterrovymi integro-differentsialnymi uravneniyami s singulyarnymi yadrami”, Diff. uravn., 57:10 (2021), 1426–1430 | Zbl

[3] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR

[4] Zakora D. A., “Eksponentsialnaya ustoichivost odnoi polugruppy i prilozheniya”, Mat. zametki, 103:5 (2018), 702–719 | MR | Zbl

[5] Zakora D. A., “Asimptotika reshenii v zadache o malykh dvizheniyakh szhimaemoi zhidkosti Maksvella”, Diff. uravn., 55:9 (2019), 1195–1208 | Zbl

[6] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazko-uprugosti, Nauka, M., 1970 | MR

[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[8] Krein C. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[9] Alabau-Boussouria F., Cannarsa P., “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Math. Acad. Sci. Paris, 347 (2009), 867–872 | DOI | MR

[10] Alabau-Boussouria F., Cannarsa P., Sforza D., “Decay estimates for second order evolution equations with memory”, J. Funct. Anal., 254 (2008), 1342–1372 | DOI | MR

[11] Ammar-Khodja F., Benabdallah A., Muñoz Rivera J. E., Racke R., “Energy decay for Timoshenko systems of memory type”, J. Differ. Equ., 194:1 (2003), 82–115 | DOI | MR | Zbl

[12] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of Materials with Memory, Springer, Boston, 2012 | MR | Zbl

[13] Dafermos C. M., “Asymptotic stability in viscoelasticity”, Arch. Ration. Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[14] Dafermos C. M., “An abstract Volterra equation with applications to linear viscoelasticity”, J. Differ. Equ., 7:3 (1970), 554–569 | DOI | MR | Zbl

[15] Dell'Oro F., “Asymptotic stability of thermoelastic systems of Bresse type”, J. Differ. Equ., 258:11 (2015), 3902–3927 | DOI | MR | Zbl

[16] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Eqations, Springer, New York, 2000 | MR

[17] Fabrizio M., Morro A., Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992 | MR | Zbl

[18] Fatori L. H., Monteiro R. N., Sare H. D. F., “The Timoshenko system with history and Cattaneo law”, Appl. Math. Comput., 228:1 (2014), 128–140 | MR | Zbl

[19] Liu Z., Zheng S., Semigroups Associated with Dissipative Systems, Chapman Hall/CRC, London, 1999 | MR | Zbl

[20] Ma Z., Zhang L., Yang X., “Exponential stability for a Timoshenko-type system with history”, J. Math. Anal. Appl., 380:1 (2011), 299–312 | DOI | MR | Zbl

[21] Messaoudi S. A., Apalara T. A., “General stability result in a memory-type porous thermoelasticity system of type III”, Arab J. Math. Sci., 20:2 (2014), 213–232 | MR | Zbl

[22] Muñoz Rivera J. E., Naso M. G., “Asymptotic stability of semigroups associated with linear weak dissipative systems with memory”, J. Math. Anal. Appl., 326 (2007), 691–707 | DOI | MR | Zbl

[23] Pandolfi L., Linear systems with persistent memory: An overview of the biblography on controllability, 2018, arXiv: 1804.01865 [math.OC]

[24] Racke R., Said-Houari B., “Global existence and decay property of the Timoshenko system in thermoelasticity with second sound”, Nonlinear Anal., 75:13 (2012), 4957–4973 | DOI | MR | Zbl

[25] Renardy M., Hrusa W. J., Nohel J. A., Mathematical problems in viscoelasticity, Longman Scientific Technical, Harlow, 1987 | MR | Zbl

[26] Zakora D., “On the spectrum of rotating viscous relaxing fluid”, Zhurn. mat. fiz. anal. geom., 12:4 (2016), 338–358 | MR | Zbl