Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_3_a2, author = {N. I. Zhukova and G. S. Levin and N. S. Tonysheva}, title = {Chaos in topological foliations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {424--450}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/} }
TY - JOUR AU - N. I. Zhukova AU - G. S. Levin AU - N. S. Tonysheva TI - Chaos in topological foliations JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 424 EP - 450 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/ LA - ru ID - CMFD_2022_68_3_a2 ER -
N. I. Zhukova; G. S. Levin; N. S. Tonysheva. Chaos in topological foliations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 424-450. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/
[1] Zhukova N. I., “Globalnye attraktory polnykh konformnykh sloenii”, Mat. sb., 203:3 (2012), 79–106 | MR | Zbl
[2] Zhukova N. I., Rogozhina E. A., “Klassifikatsiya kompaktnykh lorentsevykh 2-orbifoldov s nekompaktnoi polnoi gruppoi izometrii”, Sib. mat. zh., 53:6 (2012), 1292–1309 | MR | Zbl
[3] Zhukova N. I., Chebochko N. G., “Struktura lorentsevykh sloenii korazmernosti dva”, Izv. vuzov. Ser. Mat., 64:11 (2020), 87–92 | MR | Zbl
[4] Zhukova N. I., Sheina K. I., “Struktura sloenii s integriruemoi svyaznostyu Eresmana”, Ufimsk. mat. zh., 14:1 (2022), 23–40
[5] Shapiro Ya. L., “O privodimykh rimanovykh mnogoobraziyakh v tselom”, Izv. vuzov. Ser. Mat., 1972, no. 6, 78–85 | Zbl
[6] Shapiro Ya. L., “O dvulistnoi strukture na privodimom rimanovom mnogoobrazii”, Izv. vuzov. Ser. Mat., 1972, no. 12, 102–110 | Zbl
[7] Shapiro Ya. L., Zhukova N. I., “O prostykh dvusloeniyakh”, Izv. vuzov. Ser. Mat., 1976, no. 4, 95–104 | Zbl
[8] Assaf D. IV, Gadbois S., “Definition of chaos”, Am. Math. Monthly., 99:9 (1992), 865 | DOI
[9] Banks J., Brooks J., Cairns G., Davis G., Stacey P., “On Devaney's definition of chaos”, Am. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl
[10] Bazaikin Y. V., Galaev A. S., Zhukova N. I., “Chaos in Cartan foliations”, Chaos, 30:10 (2020), 1–9 | DOI | MR
[11] Blumenthal R. A., Hebda J. J., “Ehresmann connection for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl
[12] Cairns G., Davis G., Elton E., Kolganova A., Perversi P., “Chaotic group actions”, Enseign. Math., 41 (1995), 123–133 | MR | Zbl
[13] Cairns G., Kolganova A., Nielsen A., “Topological transitivity and mixing notions for group actions”, Rocky Mountain J. Math., 37:2 (2007), 371–397 | DOI | MR | Zbl
[14] Candel A., Conlon L., Foliations I, Amer. Math. Soc., Providence, 2000 | MR | Zbl
[15] Churchill R. C., “On defining chaos in absent of time”, Deterministic Chaos in General Relativity, 1994, 107–112 | DOI | MR
[16] Devaney R. L., An Introduction to Chaotic Dynamical Systems, The Benjamin/ Cummings Publishing Co., Inc., Menlo Park, etc., 1986 | MR | Zbl
[17] Grosse-Erdmann K.-G., Manguillot A. P., Linear Chaos, Springer, London, 2011 | MR | Zbl
[18] Kashiwabara S., “The decomposition of differential manifolds and its applications”, Tohoku Math. J., 11 (1959), 43–53 | MR | Zbl
[19] Kervaire M. A., “A manifold which does not admit any differentiable structure”, Comment. Math. Helv., 34:1 (1960), 257–270 | DOI | MR | Zbl
[20] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl
[21] Manolescu C., Four-dimensional topology, https://web.stanford.edu/c̃m5/4D.pdf
[22] Polo F., “Sensitive dependence on initial conditions and chaotic group actions”, Proc. Am. Math. Soc., 138:8 (2010), 2815–2826 | DOI | MR | Zbl
[23] Reeb G., “Sur la theorie generale des systemes dynamiques”, Ann. Inst. Fourier (Grenoble), 6 (1955), 89–115 | DOI | MR
[24] Suda T., Poincare maps and suspension flows: A categorical remarks, 2021, arXiv: 2107.06567 [math.DS] | MR
[25] Tamura I., Topology of Foliations: An Introduction, AMS, Providence, 1992 | MR | Zbl
[26] Thurston W. P., Three-Dimensional Geometry and Topology, Prinston Univ. Press, Prinston, 1997 | MR | Zbl
[27] Vaisman I., “On some spaces which are covered by a product space”, Ann. Inst. Fourier (Grenoble), 27:1 (1977), 107–134 | DOI | MR | Zbl
[28] Zhukova N. I., Chubarov G. V., “Aspects of the qualitative theory of suspended foliations”, J. Differ. Equ. Appl., 9:3-4 (2003), 393–405 | DOI | MR | Zbl
[29] Zhukova N. I., Chubarov G. V., “Structure of graphs of suspended foliations”, J. Math. Sci. (N.Y.), 261:3 (2022), 410–425 | DOI | MR | Zbl