Chaos in topological foliations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 424-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

We call a foliation $(M, F)$ on a manifold $M$ chaotic if it is topologically transitive and the union of closed leaves is dense in $M.$ A foliated manifold $M$ is not assumed to be compact. The chaotic foliations can be considered as multidimensional generalization of chaotic dynamical systems in the sense of Devaney. For foliations covered by fibrations we prove that a foliation is chaotic if and only if its global holonomy group is chaotic. We introduce the concept of the integrable Ehresmann connection for a foliation as a natural generalization of the integrable Ehresmann connection for smooth foliations. A description of the global structure of foliations with integrable Ehresmann connection and a criterion for the chaotic behavior of such foliations are obtained. Applying the method of suspension, a new countable family of pairwise nonisomorphic chaotic foliations of codimension two on $3$-dimensional closed and nonclosed manifolds is constructed.
@article{CMFD_2022_68_3_a2,
     author = {N. I. Zhukova and G. S. Levin and N. S. Tonysheva},
     title = {Chaos in topological foliations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {424--450},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - G. S. Levin
AU  - N. S. Tonysheva
TI  - Chaos in topological foliations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 424
EP  - 450
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/
LA  - ru
ID  - CMFD_2022_68_3_a2
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A G. S. Levin
%A N. S. Tonysheva
%T Chaos in topological foliations
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 424-450
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/
%G ru
%F CMFD_2022_68_3_a2
N. I. Zhukova; G. S. Levin; N. S. Tonysheva. Chaos in topological foliations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 424-450. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a2/

[1] Zhukova N. I., “Globalnye attraktory polnykh konformnykh sloenii”, Mat. sb., 203:3 (2012), 79–106 | MR | Zbl

[2] Zhukova N. I., Rogozhina E. A., “Klassifikatsiya kompaktnykh lorentsevykh 2-orbifoldov s nekompaktnoi polnoi gruppoi izometrii”, Sib. mat. zh., 53:6 (2012), 1292–1309 | MR | Zbl

[3] Zhukova N. I., Chebochko N. G., “Struktura lorentsevykh sloenii korazmernosti dva”, Izv. vuzov. Ser. Mat., 64:11 (2020), 87–92 | MR | Zbl

[4] Zhukova N. I., Sheina K. I., “Struktura sloenii s integriruemoi svyaznostyu Eresmana”, Ufimsk. mat. zh., 14:1 (2022), 23–40

[5] Shapiro Ya. L., “O privodimykh rimanovykh mnogoobraziyakh v tselom”, Izv. vuzov. Ser. Mat., 1972, no. 6, 78–85 | Zbl

[6] Shapiro Ya. L., “O dvulistnoi strukture na privodimom rimanovom mnogoobrazii”, Izv. vuzov. Ser. Mat., 1972, no. 12, 102–110 | Zbl

[7] Shapiro Ya. L., Zhukova N. I., “O prostykh dvusloeniyakh”, Izv. vuzov. Ser. Mat., 1976, no. 4, 95–104 | Zbl

[8] Assaf D. IV, Gadbois S., “Definition of chaos”, Am. Math. Monthly., 99:9 (1992), 865 | DOI

[9] Banks J., Brooks J., Cairns G., Davis G., Stacey P., “On Devaney's definition of chaos”, Am. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[10] Bazaikin Y. V., Galaev A. S., Zhukova N. I., “Chaos in Cartan foliations”, Chaos, 30:10 (2020), 1–9 | DOI | MR

[11] Blumenthal R. A., Hebda J. J., “Ehresmann connection for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[12] Cairns G., Davis G., Elton E., Kolganova A., Perversi P., “Chaotic group actions”, Enseign. Math., 41 (1995), 123–133 | MR | Zbl

[13] Cairns G., Kolganova A., Nielsen A., “Topological transitivity and mixing notions for group actions”, Rocky Mountain J. Math., 37:2 (2007), 371–397 | DOI | MR | Zbl

[14] Candel A., Conlon L., Foliations I, Amer. Math. Soc., Providence, 2000 | MR | Zbl

[15] Churchill R. C., “On defining chaos in absent of time”, Deterministic Chaos in General Relativity, 1994, 107–112 | DOI | MR

[16] Devaney R. L., An Introduction to Chaotic Dynamical Systems, The Benjamin/ Cummings Publishing Co., Inc., Menlo Park, etc., 1986 | MR | Zbl

[17] Grosse-Erdmann K.-G., Manguillot A. P., Linear Chaos, Springer, London, 2011 | MR | Zbl

[18] Kashiwabara S., “The decomposition of differential manifolds and its applications”, Tohoku Math. J., 11 (1959), 43–53 | MR | Zbl

[19] Kervaire M. A., “A manifold which does not admit any differentiable structure”, Comment. Math. Helv., 34:1 (1960), 257–270 | DOI | MR | Zbl

[20] Kobayashi S., Nomizu K., Foundations of Differential Geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl

[21] Manolescu C., Four-dimensional topology, https://web.stanford.edu/c̃m5/4D.pdf

[22] Polo F., “Sensitive dependence on initial conditions and chaotic group actions”, Proc. Am. Math. Soc., 138:8 (2010), 2815–2826 | DOI | MR | Zbl

[23] Reeb G., “Sur la theorie generale des systemes dynamiques”, Ann. Inst. Fourier (Grenoble), 6 (1955), 89–115 | DOI | MR

[24] Suda T., Poincare maps and suspension flows: A categorical remarks, 2021, arXiv: 2107.06567 [math.DS] | MR

[25] Tamura I., Topology of Foliations: An Introduction, AMS, Providence, 1992 | MR | Zbl

[26] Thurston W. P., Three-Dimensional Geometry and Topology, Prinston Univ. Press, Prinston, 1997 | MR | Zbl

[27] Vaisman I., “On some spaces which are covered by a product space”, Ann. Inst. Fourier (Grenoble), 27:1 (1977), 107–134 | DOI | MR | Zbl

[28] Zhukova N. I., Chubarov G. V., “Aspects of the qualitative theory of suspended foliations”, J. Differ. Equ. Appl., 9:3-4 (2003), 393–405 | DOI | MR | Zbl

[29] Zhukova N. I., Chubarov G. V., “Structure of graphs of suspended foliations”, J. Math. Sci. (N.Y.), 261:3 (2022), 410–425 | DOI | MR | Zbl