On the completeness of eigenfunctions of one $5$th-order differential operator
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 68 (2022) no. 2, pp. 338-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we fully solve the problem of the completeness of the eigenfunctions of an ordinary $5$th-order differential operator in the space of square-summable functions on the segment $[0,1]$ generated by the simplest differential expression $y^{(5)}$ and two-point two-term boundary conditions $\alpha_\nu y^{(\nu-1)}(0)+\beta_\nu y^{(\nu-1)}(1)=0$ and $\nu=\overline{1,5},$ under the main assumption $\alpha_\nu\neq 0,$ $\nu=\overline{1,5}$ or $\beta_\nu\neq 0,$ $\nu=\overline{1,5}$ (in this case, without loss of generality, we can assume that all $\alpha_\nu$ or all $\beta_\nu,$, respectively, are equal to one). The classical methods of studying completeness, which go back to well-known articles by M. V. Keldysh, A. P. Khromov, A. A. Shkalikov, and many others, are not applicable to the operator under consideration. These methods are based on “good” estimates for the spectral parameter of the used generating functions (“classical”) for the system of eigenfunctions and associated functions. In the case of a strong irregularity of the operator under consideration, these «classical» generating functions have too large rate of grows in the spectral parameter. To solve the problem of multiple completeness, we propose a new approach that uses a special parametric solution that generalizes «classical» generating functions. The main idea of this approach is to select the parameters of this special solution to construct generating functions that are no longer «classical» with suitable estimates in terms of the spectral parameter. Such a selection for the operator under consideration turned out to be possible, although rather nontrivial, which allowed us to follow the traditional scheme of proving the completeness of the system of eigenfunctions in the space of square-summable functions on the segment $[0,1].$
@article{CMFD_2022_68_2_a1,
     author = {V. S. Rykhlov},
     title = {On the completeness of eigenfunctions of one $5$th-order differential operator},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {338--375},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a1/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - On the completeness of eigenfunctions of one $5$th-order differential operator
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 338
EP  - 375
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a1/
LA  - ru
ID  - CMFD_2022_68_2_a1
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T On the completeness of eigenfunctions of one $5$th-order differential operator
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 338-375
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a1/
%G ru
%F CMFD_2022_68_2_a1
V. S. Rykhlov. On the completeness of eigenfunctions of one $5$th-order differential operator. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 68 (2022) no. 2, pp. 338-375. http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a1/

[1] Vagabov A. I., Razlozheniya v ryady Fure po glavnym funktsiyam differentsialnykh operatorov i ikh primeneniya, Diss. d.f.-m.n., M., 1988

[2] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rost. un-ta, Rostov-na-Donu, 1994

[3] Gasymov M. G., Magerramov A. M., “O kratnoi polnote sistemy sobstvennykh i prisoedinennykh funktsii odnogo klassa differentsialnykh operatorov”, Dokl. AN AzSSR, 30:12 (1974), 9–12

[4] Golub A. V., Kutepov V. A., Rykhlov V. S., O polnote sobstvennykh funktsii prosteishego differentsialnogo operatora 5-go poryadka, Dep. v VINITI, No 1354-V2004, 05.08.2004

[5] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam differentsialnogo operatora $n$-go poryadka s neregulyarnymi kraevymi usloviyami”, Matematika i ee prilozheniya. Teoriya, metody, algoritmy, 2, Izd-vo SGU, Saratov, 1991, 70–72

[6] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi tretego poryadka”, Matematika. Mekhanika, 3, Izd-vo SGU, Saratov, 2001, 40–42

[7] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam differentsialnogo operatora $n$-go poryadka s neregulyarnymi kraevymi usloviyami”, Izv. SGU. Nov. ser. Ser. Mat. Mekh. Inf., 2 (2007), 10–14

[8] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi pyatogo poryadka”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 5, Izd-vo SGU, Saratov, 2009, 14–17

[9] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14

[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[11] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986

[12] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[13] Rykhlov V. S., Razlozheniya po sobstvennym i prisoedinennym funktsiyam kvazidifferentsialnykh i integralnykh operatorov, Diss. k.f.-m.n., Saratov, 1981

[14] Rykhlov V. S., “Asimptotika sistemy reshenii kvazidifferentsialnykh uravnenii”, Differentsialnye uravneniya i teoriya funktsii. Razlozhenie i skhodimost, 5, Izd-vo SGU, Saratov, 1983, 51–59

[15] Rykhlov V. S., “Asimptotika sistemy reshenii differentsialnogo uravneniya obschego vida s parametrom”, Ukr. mat. zhurn., 48:1 (1996), 96–108

[16] Rykhlov V. S., “Kratnaya polnota sobstvennykh funktsii prosteishego puchka 5-go poryadka”, Spectral and Evolution Problems, 12 (2002), 42–51

[17] Rykhlov V. S., “Polnota sobstvennykh funktsii nekotorykh klassov neregulyarnykh differentsialnykh operatorov”, Spectral and evolution problems, 13 (2003), 165–169

[18] Rykhlov V. S., “O polnote kornevykh funktsii prosteishikh silno neregulyarnykh differentsialnykh operatorov s dvuchlennymi dvukhtochechnymi kraevymi usloviyami”, Dokl. RAN, 428:6 (2009), 740–743

[19] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917

[20] Tikhomirov S. A., Konechnomernye vozmuscheniya integralnykh volterrovykh operatorov v prostranstve vektor-funktsii, Diss. k.f.-m.n., Saratov, 1987, 126 pp.

[21] Khromov A. P., “Razlozhenie po sobstvennym funktsiyam obyknovennykh differentsialnykh operatorov v konechnom intervale”, Dokl. AN SSSR, 146:6 (1962), 1294–1297

[22] Khromov A. P., Konechnomernye vozmuscheniya volterrovykh operatorov, Diss. d.f.-m.n., Novosibirsk, 1973

[23] Khromov A. P., “Konechnomernye vozmuscheniya volterrovykh operatorov”, Mat. zametki, 16:4 (1974), 669–680

[24] Khromov A. P., “O porozhdayuschikh funktsiyakh volterrovykh operatorov”, Mat. sb., 102:3 (1977), 457–472

[25] Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi tretego poryadka”, Issledovaniya po teorii operatorov, BF AN SSSR, Ufa, 1988, 182–193

[26] Shkalikov A. A., “O polnote sobstvennykh i prisoedinennykh funktsii obyknovennogo differentsialnogo operatora s neregulyarnymi kraevymi usloviyami”, Funkts. analiz i ego prilozh., 10:4 (1976), 69–80

[27] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, 1983, 190–229

[28] Benzinger H. E., “Green's function for ordinary differential operators”, J. Differ. Equ., 7:3 (1970), 478–496

[29] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Am. Math. Soc., 9 (1908), 373–395

[30] Eberhard W., “Zur Vollständigkeit des Biorthogonalsystems von Eigenfunktionen irregulärer Eigenwertprobleme”, Math. Z., 146:3 (1976), 213–221

[31] Freiling G., “Zur Vollständigkeit des Systems der Eigenfunktionen und Hauptfunktionen irregulärer Operator-büschel”, Math. Z. ", 188:1 (1984), 55–68

[32] Rykhlov V. S., “On completeness of eigenfunctions for pencils of differential operators”, Spectral and Evolution Problems, 7 (1997), 70–73

[33] Stone M. H., “A comparison of the series of Fourier and Birkhoff”, Trans. Am. Math. Soc., 28 (1926), 695–761

[34] Stone M. H., “Irregular differential systems of order two and related expansion problems”, Trans. Am. Math. Soc., 29 (1927), 23–53