Holomorphic continuation of functions along a fixed direction (survey)
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 127-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we give an overview of the most significant and important results on holomorphic extensions of functions along a fixed direction. We discuss the following geometric questions of multidimensional complex analysis: holomorphic extension along a bundle of complex straight line, the Forelly theorem; holomorphic continuation of functions with thin singularities along a fixed direction; holomorphic continuation of functions along a family of analytic curves.
@article{CMFD_2022_68_1_a9,
     author = {A. S. Sadullaev},
     title = {Holomorphic continuation of functions along a fixed direction (survey)},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {127--143},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/}
}
TY  - JOUR
AU  - A. S. Sadullaev
TI  - Holomorphic continuation of functions along a fixed direction (survey)
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 127
EP  - 143
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/
LA  - ru
ID  - CMFD_2022_68_1_a9
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%T Holomorphic continuation of functions along a fixed direction (survey)
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 127-143
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/
%G ru
%F CMFD_2022_68_1_a9
A. S. Sadullaev. Holomorphic continuation of functions along a fixed direction (survey). Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 127-143. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/

[1] Abdullaev B. I., Sadullaev A., “Teoriya potentsialov v klasse $m$-cubgarmonicheskikh funktsii”, Tr. MIAN, 279, 2012, 166–192 | MR | Zbl

[2] Abdullaev B. I., Sadullaev A., “Emkosti i gessiany v klasse $m$-subgarmonicheskikh funktsii”, Dokl. RAN, 448:5 (2013), 1–3

[3] Atamuratov A. A., “O meromorfnom prodolzhenii vdol fiksirovannogo napravleniya”, Mat. zametki, 86:3 (2009), 323–327 | MR | Zbl

[4] Zakharyuta V. P., “Ekstremalnye plyurisubgarmonicheskie funktsii, ortogonalnye polinomy i teorema Bernshteina—Uolsha dlya analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Ann. Polon. Math., 33 (1976), 137–148 | DOI | Zbl

[5] Imomkulov S. A., “O golomorfnom prodolzhenii funktsii, zadannykh na granichnom puchke kompleksnykh pryamykh”, Izv. RAN. Ser. Mat., 69:2 (2005), 125–144 | MR | Zbl

[6] Sadullaev A., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, Usp. mat. nauk, 36:4 (1981), 35–105

[7] Sadullaev A., “Plyurisubgarmonicheskie funktsii”, Sovrem. probl. mat. Fundam. napravl., 8, 1985, 65–113

[8] Sadullaev A., “O plyurigarmonicheskom prodolzhenii vdol fiksirovannogo napravleniya”, Mat. sb., 196 (2005), 145–156 | Zbl

[9] Sadullaev A., Teoriya plyuripotentsiala. Primeneniya, Palmarium Academic Publishing, Riga, 2012

[10] Sadullaev A., Imomkulov S. A., “Prodolzhenie plyurigarmonicheskikh funktsii s diskretnymi osobennostyami na parallelnykh secheniyakh”, Vestn. Krasnoyarsk. gos. un-ta, 2004, no. 5/2, 3–6 | MR

[11] Sadullaev A., Imomkulov S. A., “Prodolzhenie golomorfnykh i plyurigarmonicheskikh funktsii s tonkimi osobennostyami na parallelnykh secheniyakh”, Tr. MIAN, 253, 2006, 158–174 | Zbl

[12] Sadullaev A., Tuichiev T., “O prodolzhenii ryadov Khartogsa, dopuskayuschikh golomorfnoe prodolzhenie na parallelnye secheniiya”, Uzb. mat. zh., 2009, no. 1, 148–157 | MR

[13] Sadullaev A., Chirka E. M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Mat. sb., 132:3 (1987), 383–390 | Zbl

[14] Khudaiberganov G., “O polinomialnoi i ratsionalnoi vypuklosti ob'edineniya kompaktov v ${\mathbb C}^{n}$”, Izv. vuzov. Ser. mat., 1987, no. 2, 70–74 | MR | Zbl

[15] Chirka E., “Variatsiya teoremy Khartogsa”, Tr. MIAN, 253, 2006, 232–240 | Zbl

[16] Abdullayev B. I., “Subharmonic functions on complex Hyperplanes of ${\mathbb C}^{n}$”, Zhurn. SFU. Ser. Mat. Fiz., 6:4 (2013), 409–416

[17] Abdullayev B. I., “$\mathcal{P}$-measure in the class of $m-wsh$ functions”, Zhurn. SFU. Ser. Mat. Fiz., 7:1 (2014), 3–9

[18] Alexander H., “Projective capacity”, Ann. Math. Stud., 100:1 (1981), 3–27 | MR | Zbl

[19] Atamuratov A. A., Vaisova M. D., “On the meromorphic extension along the complex lines”, TWMS J. Pure Appl. Math., 2:1 (2011), 10–16 | MR | Zbl

[20] Bedford E., “Survey of pluripotential theory, several complex variable”, Math. Notes, 38 (1993), 48–95 | MR

[21] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta Math., 149:1-2 (1982), 1–40 | DOI | MR | Zbl

[22] Blocki Z., “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier, 5 (2005), 1735–1756 | DOI | MR | Zbl

[23] Bloom T., Levenberg N., “Weighted pluripotential theory in ${\mathbb C}^{N}$”, Am. J. Math., 125:1 (2003), 57–103 | DOI | MR | Zbl

[24] Cegrell U., “The general definition of the complex Monge—Ampere operator”, Ann. Inst. Fourier, 54 (2004), 159–179 | DOI | MR

[25] Coman D., Guedj V., Zeriahi A., “Domains of definition of Monge—Ampere operators on compact Kahler manifolds”, Math. Z., 259 (2008), 393–418 | DOI | MR | Zbl

[26] Dinew S., Kolodziej S., “A priori estimates for the complex Hessian equation”, Anal. PDE, 7 (2014), 227–244 | DOI | MR | Zbl

[27] Forelly F., “Plurisubharmonicity in terms of harmonic slices”, Math. Scand., 41 (1977), 358–364 | DOI | MR

[28] Joo J.-C., Kim K.-T., Schmalz G., “A generalization of Forelli's theorem”, Math. Ann., 355 (2013), 1171–1176 | DOI | MR | Zbl

[29] Joo J.-C., Kim K.-T., Schmalz G., “On the generalization of Forelli's theorem”, Math. Ann., 365 (2016), 1187–1200 | DOI | MR | Zbl

[30] Khudaiberganov G., “On the homogeneous-polynomially convex hull of balls”, Pliska Stud. Math. Bulgar., 10 (1989), 45–49 | MR | Zbl

[31] Kim K.-T., Poletsky E., Schmalz G., “Functions holomorphic along holomorphic vector fields”, J. Geom. Anal., 19 (2009), 655–666 | DOI | MR | Zbl

[32] Klimek M., Pluripotential theory, Clarendon Press, Oxford etc., 1991 | MR | Zbl

[33] Siciak J., “Extremal plurisubharmonic functios in ${\mathbb C}^{n}$”, Ann. Polon. Math., 39 (1981), 175–211 | DOI | MR | Zbl

[34] Tuychiev T., “On domains of convergence of multidimensional locunary series”, Zhurn. SFU. Ser. Mat. Fiz., 12:6 (2019), 736–746 | MR | Zbl

[35] Tuychiev T., Tishabaev J., “On the continuation of the Hartogs series with holomorphic coefficients”, Bull. Natl. Univ. Uzbekistan. Math. Nat. Sci., 2:1 (2019), 69–76