Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a9, author = {A. S. Sadullaev}, title = {Holomorphic continuation of functions along a fixed direction (survey)}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {127--143}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/} }
TY - JOUR AU - A. S. Sadullaev TI - Holomorphic continuation of functions along a fixed direction (survey) JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 127 EP - 143 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/ LA - ru ID - CMFD_2022_68_1_a9 ER -
A. S. Sadullaev. Holomorphic continuation of functions along a fixed direction (survey). Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 127-143. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a9/
[1] Abdullaev B. I., Sadullaev A., “Teoriya potentsialov v klasse $m$-cubgarmonicheskikh funktsii”, Tr. MIAN, 279, 2012, 166–192 | MR | Zbl
[2] Abdullaev B. I., Sadullaev A., “Emkosti i gessiany v klasse $m$-subgarmonicheskikh funktsii”, Dokl. RAN, 448:5 (2013), 1–3
[3] Atamuratov A. A., “O meromorfnom prodolzhenii vdol fiksirovannogo napravleniya”, Mat. zametki, 86:3 (2009), 323–327 | MR | Zbl
[4] Zakharyuta V. P., “Ekstremalnye plyurisubgarmonicheskie funktsii, ortogonalnye polinomy i teorema Bernshteina—Uolsha dlya analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Ann. Polon. Math., 33 (1976), 137–148 | DOI | Zbl
[5] Imomkulov S. A., “O golomorfnom prodolzhenii funktsii, zadannykh na granichnom puchke kompleksnykh pryamykh”, Izv. RAN. Ser. Mat., 69:2 (2005), 125–144 | MR | Zbl
[6] Sadullaev A., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, Usp. mat. nauk, 36:4 (1981), 35–105
[7] Sadullaev A., “Plyurisubgarmonicheskie funktsii”, Sovrem. probl. mat. Fundam. napravl., 8, 1985, 65–113
[8] Sadullaev A., “O plyurigarmonicheskom prodolzhenii vdol fiksirovannogo napravleniya”, Mat. sb., 196 (2005), 145–156 | Zbl
[9] Sadullaev A., Teoriya plyuripotentsiala. Primeneniya, Palmarium Academic Publishing, Riga, 2012
[10] Sadullaev A., Imomkulov S. A., “Prodolzhenie plyurigarmonicheskikh funktsii s diskretnymi osobennostyami na parallelnykh secheniyakh”, Vestn. Krasnoyarsk. gos. un-ta, 2004, no. 5/2, 3–6 | MR
[11] Sadullaev A., Imomkulov S. A., “Prodolzhenie golomorfnykh i plyurigarmonicheskikh funktsii s tonkimi osobennostyami na parallelnykh secheniyakh”, Tr. MIAN, 253, 2006, 158–174 | Zbl
[12] Sadullaev A., Tuichiev T., “O prodolzhenii ryadov Khartogsa, dopuskayuschikh golomorfnoe prodolzhenie na parallelnye secheniiya”, Uzb. mat. zh., 2009, no. 1, 148–157 | MR
[13] Sadullaev A., Chirka E. M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Mat. sb., 132:3 (1987), 383–390 | Zbl
[14] Khudaiberganov G., “O polinomialnoi i ratsionalnoi vypuklosti ob'edineniya kompaktov v ${\mathbb C}^{n}$”, Izv. vuzov. Ser. mat., 1987, no. 2, 70–74 | MR | Zbl
[15] Chirka E., “Variatsiya teoremy Khartogsa”, Tr. MIAN, 253, 2006, 232–240 | Zbl
[16] Abdullayev B. I., “Subharmonic functions on complex Hyperplanes of ${\mathbb C}^{n}$”, Zhurn. SFU. Ser. Mat. Fiz., 6:4 (2013), 409–416
[17] Abdullayev B. I., “$\mathcal{P}$-measure in the class of $m-wsh$ functions”, Zhurn. SFU. Ser. Mat. Fiz., 7:1 (2014), 3–9
[18] Alexander H., “Projective capacity”, Ann. Math. Stud., 100:1 (1981), 3–27 | MR | Zbl
[19] Atamuratov A. A., Vaisova M. D., “On the meromorphic extension along the complex lines”, TWMS J. Pure Appl. Math., 2:1 (2011), 10–16 | MR | Zbl
[20] Bedford E., “Survey of pluripotential theory, several complex variable”, Math. Notes, 38 (1993), 48–95 | MR
[21] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta Math., 149:1-2 (1982), 1–40 | DOI | MR | Zbl
[22] Blocki Z., “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier, 5 (2005), 1735–1756 | DOI | MR | Zbl
[23] Bloom T., Levenberg N., “Weighted pluripotential theory in ${\mathbb C}^{N}$”, Am. J. Math., 125:1 (2003), 57–103 | DOI | MR | Zbl
[24] Cegrell U., “The general definition of the complex Monge—Ampere operator”, Ann. Inst. Fourier, 54 (2004), 159–179 | DOI | MR
[25] Coman D., Guedj V., Zeriahi A., “Domains of definition of Monge—Ampere operators on compact Kahler manifolds”, Math. Z., 259 (2008), 393–418 | DOI | MR | Zbl
[26] Dinew S., Kolodziej S., “A priori estimates for the complex Hessian equation”, Anal. PDE, 7 (2014), 227–244 | DOI | MR | Zbl
[27] Forelly F., “Plurisubharmonicity in terms of harmonic slices”, Math. Scand., 41 (1977), 358–364 | DOI | MR
[28] Joo J.-C., Kim K.-T., Schmalz G., “A generalization of Forelli's theorem”, Math. Ann., 355 (2013), 1171–1176 | DOI | MR | Zbl
[29] Joo J.-C., Kim K.-T., Schmalz G., “On the generalization of Forelli's theorem”, Math. Ann., 365 (2016), 1187–1200 | DOI | MR | Zbl
[30] Khudaiberganov G., “On the homogeneous-polynomially convex hull of balls”, Pliska Stud. Math. Bulgar., 10 (1989), 45–49 | MR | Zbl
[31] Kim K.-T., Poletsky E., Schmalz G., “Functions holomorphic along holomorphic vector fields”, J. Geom. Anal., 19 (2009), 655–666 | DOI | MR | Zbl
[32] Klimek M., Pluripotential theory, Clarendon Press, Oxford etc., 1991 | MR | Zbl
[33] Siciak J., “Extremal plurisubharmonic functios in ${\mathbb C}^{n}$”, Ann. Polon. Math., 39 (1981), 175–211 | DOI | MR | Zbl
[34] Tuychiev T., “On domains of convergence of multidimensional locunary series”, Zhurn. SFU. Ser. Mat. Fiz., 12:6 (2019), 736–746 | MR | Zbl
[35] Tuychiev T., Tishabaev J., “On the continuation of the Hartogs series with holomorphic coefficients”, Bull. Natl. Univ. Uzbekistan. Math. Nat. Sci., 2:1 (2019), 69–76