Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a8, author = {M. Saburov and Kh. Saburov}, title = {Applications of quadratic stochastic operators to nonlinear consensus problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {110--126}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a8/} }
TY - JOUR AU - M. Saburov AU - Kh. Saburov TI - Applications of quadratic stochastic operators to nonlinear consensus problems JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 110 EP - 126 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a8/ LA - ru ID - CMFD_2022_68_1_a8 ER -
%0 Journal Article %A M. Saburov %A Kh. Saburov %T Applications of quadratic stochastic operators to nonlinear consensus problems %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 110-126 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a8/ %G ru %F CMFD_2022_68_1_a8
M. Saburov; Kh. Saburov. Applications of quadratic stochastic operators to nonlinear consensus problems. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 110-126. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a8/
[1] Zhamilov U. U., Rozikov U. A., “O dinamike strogo nevolterrovskikh kvadratichnykh stokhasticheskikh operatorov na dvumernom simplekse”, Mat. sb., 200:9 (2009), 81–94 | MR | Zbl
[2] Rozikov U. A., Zada A., “Ob l-volterrovskikh kvadratichnykh stokhasticheskikh operatorakh”, Dokl. RAN, 424:2 (2009), 168–170 | Zbl
[3] Berger R. L., “A necessary and sufficient condition for reaching a consensus using DeGroot's method”, J. Am. Statist. Assoc., 76 (1981), 415–418 | DOI | MR | Zbl
[4] Bernstein S., “Solution of a mathematical problem connected with the theory of heredity”, Ann. Math. Stat., 13 (1942), 53–61 | DOI | MR | Zbl
[5] Chatterjee S., Seneta E., “Towards consensus: some convergence theorems on repeated averaging”, J. Appl. Probab., 14 (1977), 89–97 | DOI | MR | Zbl
[6] De Groot M. H., “Reaching a consensus”, J. Am. Statist. Assoc., 69 (1974), 118–121 | DOI | Zbl
[7] Ganihodzhaev N., “On stochastic processes generated by quadratic operators”, J. Theoret. Probab., 4 (1991), 639–653 | DOI | MR
[8] Ganikhodjaev N., Akin H., Mukhamedov F., “On the ergodic principle for Markov and quadratic stochastic processes and its relations”, Linear Algebra App., 416 (2006), 730–741 | DOI | MR | Zbl
[9] Ganikhodzhaev R., Mukhamedov F., Rozikov U., “Quadratic stochastic operators and processes: results and open problems”, Inf. Dim. Anal. Quan. Prob. Rel. Top., 14:2 (2011), 279–335 | DOI | MR | Zbl
[10] Hegselmann R., Krause U., “Opinion dynamics and bounded confidence: models, analysis and simulation”, J. Art. Soc. Social Sim., 5:3 (2002), 1–33
[11] Hegselmann R., Krause U., “Opinion dynamics driven by various ways of averaging”, Comput. Econ., 25 (2005), 381–405 | DOI | Zbl
[12] Jadbabaie A., Lin J., Morse A. S., “Coordination of groups of mobile autonomous agents using nearest neighbor rules”, IEEE Trans. Automat. Control, 48:6 (2003), 985–1001 | DOI | MR
[13] Jamilov U., Ladra M., “Non-ergodicity of uniform quadratic stochastic operators”, Qual. Theory Dyn. Sys., 15:1 (2016), 257–271 | DOI | MR | Zbl
[14] Jamilov U., Ladra M., Mukhitdinov R., “On the equiprobable strictly non-Volterra quadratic stochastic operators”, Qual. Theory Dyn. Sys., 16:3 (2017), 645–655 | DOI | MR | Zbl
[15] Kesten H., “Quadratic transformations: a model for population growth I”, Adv. Appl. Probab., 2 (1970), 1–82 | DOI | MR | Zbl
[16] Kolokoltsov V., Nonlinear Markov processes and kinetic equations, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[17] Krause U., “A discrete nonlinear and non-autonomous model of consensus formation”, Communications in difference equations, Gordon and Breach, Amsterdam, 2000, 227–236 | MR | Zbl
[18] Krause U., “Compromise, consensus, and the iteration of means”, Elem. Math., 64 (2009), 1–8 | DOI | MR | Zbl
[19] Krause U., “Markov chains, Gauss soups, and compromise dynamics”, J. Cont. Math. Anal., 44:2 (2009), 111–116 | DOI | MR | Zbl
[20] Krause U., “Opinion dynamics — local and global”, Proceedings of the Workshop “Future Directions in Difference Equations”, Universidade de Vigo, Vigo, 2011, 113–119 | MR | Zbl
[21] Krause U., Positive dynamical systems in discrete time: theory, models, and applications, De Gruyter, Berlin, 2015 | MR | Zbl
[22] Lyubich Y. I., Mathematical structures in population genetics, Springer, Berlin etc., 1992 | MR | Zbl
[23] Moreau L., “Stability of multiagent systems with time-dependent communication links”, IEEE Trans. Automat. Control, 50:2 (2005), 169–182 | DOI | MR | Zbl
[24] Mukhamedov F., Ganikhodjaev N., Quantum quadratic operators and processes, Springer, Cham, 2015 | MR | Zbl
[25] Pulka M., “On the mixing property and the ergodic principle for non-homogeneous Markov chains”, Linear Algebra App., 434 (2011), 1475–1488 | DOI | MR | Zbl
[26] Rozikov U., Population dynamics: algebraic and probabilistic approach, World Scientific, 2020 | MR
[27] Rozikov U., Jamilov U., “$F$-Quadratic stochastic operators”, Math. Notes, 83:4 (2008), 606–612 | MR | Zbl
[28] Saburov M., “Ergodicity of nonlinear Markov operators on the finite dimensional space”, Nonlinear Anal., 143 (2016), 105–119 | DOI | MR | Zbl
[29] Saburov M., “Quadratic stochastic Sarymsakov operators”, J. Phys. Conf. Ser., 697 (2016), 012015 | DOI
[30] Saburov M., “On regularity of diagonally positive quadratic doubly stochastic operators”, Results Math., 72 (2017), 1907–1918 | DOI | MR | Zbl
[31] Saburov M., “On regularity of positive quadratic doubly stochastic operators”, Math Notes, 103:2 (2018), 328–333 | DOI | MR | Zbl
[32] Saburov M., “Ergodicity of $\mathbf{p}$-majorizing quadratic stochastic operators”, Markov Process. Related Fields, 24:1 (2018), 131–150 | MR | Zbl
[33] Saburov M., “Ergodicity of $\mathbf{p}$-majorizing nonlinear Markov operators on the finite dimensional space”, Linear Algebra Appl., 578 (2019), 53–74 | DOI | MR | Zbl
[34] Saburov M., Saburov Kh., “Reaching a consensus in multi-agent systems: a time invariant nonlinear rule”, J. Educ. Vocational Research, 4:5 (2013), 130–133 | DOI | MR
[35] Saburov M., Saburov Kh., “Mathematical models of nonlinear uniform consensus”, Sci. Asia, 40:4 (2014), 306–312 | DOI
[36] Saburov M., Saburov Kh., “Reaching a nonlinear consensus: polynomial stochastic operators”, Inter. J. Cont. Auto. Sys., 12:6 (2014), 1276–1282 | DOI | MR
[37] Saburov M., Saburov Kh., “Reaching a nonlinear consensus: a discrete nonlinear time-varying case”, Inter. J. Sys. Sci., 47:10 (2016), 2449–2457 | DOI | MR | Zbl
[38] Saburov M., Saburov Kh., “Reaching consensus via polynomial stochastic operators: a general study”, Springer Proc. Math. Statist., 212 (2017), 219–230 | MR | Zbl
[39] Saburov M., Saburov Kh., “Mathematical models of nonlinear uniformly consensus II”, J. Appl. Nonlinear Dynamics, 7:1 (2018), 95–104 | DOI | MR | Zbl
[40] Saburov M., Yusof N. A., “Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains”, Linear Algebra Appl., 507 (2016), 153–157 | DOI | MR | Zbl
[41] Saburov M., Yusof N., “The structure of the fixed point set of quadratic operators on the simplex”, Fixed Point Theory, 19:1 (2018), 383–396 | DOI | MR | Zbl
[42] Saburov M., Yusof N., “On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex”, Methods Funct. Anal. Topol., 24:3 (2018), 255–264 | MR | Zbl
[43] Sarymsakov T., Ganikhodjaev N., “Analytic methods in the theory of quadratic stochastic processes”, J. Theor. Probab., 3 (1990), 51–70 | DOI | MR | Zbl
[44] Seneta E., Nonnegative matrices and Markov chains, Springer, New York—Heidelberg—Berlin, 1981 | MR
[45] Touri B., Nedić A., “Product of random stochastic matrices”, IEEE Trans. Automat. Control, 59:2 (2014), 437–448 | DOI | MR | Zbl
[46] Tsitsiklis J., Bertsekas D., Athans M., “Distributed asynchronous deterministic and stochastic gradient optimization algorithms”, IEEE Trans. Automat. Control, 31:9 (1986), 803–812 | DOI | MR | Zbl
[47] Ulam S., A collection of mathematical problems, Interscience Publishers, New York—London, 1960 | MR | Zbl