Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a7, author = {U. A. Rozikov and R. M. Khakimov and M. T. Makhammadaliev}, title = {Gibbs periodic measures for a two-state {HC-model} on a {Cayley} tree}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {95--109}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/} }
TY - JOUR AU - U. A. Rozikov AU - R. M. Khakimov AU - M. T. Makhammadaliev TI - Gibbs periodic measures for a two-state HC-model on a Cayley tree JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 95 EP - 109 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/ LA - ru ID - CMFD_2022_68_1_a7 ER -
%0 Journal Article %A U. A. Rozikov %A R. M. Khakimov %A M. T. Makhammadaliev %T Gibbs periodic measures for a two-state HC-model on a Cayley tree %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 95-109 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/ %G ru %F CMFD_2022_68_1_a7
U. A. Rozikov; R. M. Khakimov; M. T. Makhammadaliev. Gibbs periodic measures for a two-state HC-model on a Cayley tree. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 95-109. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/
[1] Blekher P. M., Ganikhodzhaev N. N., “O chistykh fazakh modeli Izinga na reshetke Bete”, Teor. ver. i ee prim., 35:2 (1990), 920–930
[2] Ganikhodzhaev N. N., Rozikov U. A., “Opisanie periodicheskikh krainikh gibbsovskikh mer nekotorykh reshetochnykh modelei na dereve Keli”, Teor. mat. fiz., 111:1 (1997), 109–117 | MR | Zbl
[3] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992
[4] Rozikov U. A., Rakhmatullaev M. M., “Opisanie slabo periodicheskikh mer Gibbsa modeli Izinga na dereve Keli”, Teor. mat. fiz., 156:2 (2008), 292–302 | MR | Zbl
[5] Rozikov U. A., Khakimov R. M., “Uslovie edinstvennosti slaboperiodicheskoi gibbsovskoi mery dlya modeli zhestkoi serdtseviny”, Teor. mat. fiz., 173:1 (2012), 60–70 | Zbl
[6] Rozikov U. A., Khakimov R. M., “Krainost translyatsionno-invariantnoi mery Gibbsa dlya NS-modeli na dereve Keli”, Byull. in-ta mat., 2 (2019), 17–22
[7] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980
[8] Khakimov R. M., “Edinstvennost slabo periodicheskoi gibbsovskoi mery dlya HC-modeli”, Mat. zametki, 94:5 (2013), 796–800 | Zbl
[9] Khakimov R. M., “Slabo periodicheskie mery Gibbsa dlya NS-modeli dlya normalnogo delitelya indeksa chetyre”, Ukr. mat. zh., 67:10 (2015), 1409–1422
[10] Khakimov R. M., “HC-model na dereve Keli: translyatsionno-invariantnye mery Gibbsa”, Vestn. NUUz, 2:2 (2017), 245–251
[11] Khakimov R. M., “Slabo periodicheskie mery Gibbsa dlya NS-modelei na dereve Keli”, Sib. mat. zh., 59:1 (2018), 185–196 | MR | Zbl
[12] Khakimov R. M., Makhammadaliev M. T., Uslovie edinstvennosti i ne edinstvennosti slabo periodicheskikh mer Gibbsa dlya NS-modeli, 2019, arXiv: 1910.11772v1 [math.ph]
[13] Bleher P. M., Ruiz J., Zagrebnov V. A., “On the purity of the limiting Gibbs states for the Ising model on the Bethe lattice”, J. Stat. Phys., 79:2 (1995), 473–482 | DOI | MR | Zbl
[14] Kesten H., Stigum B. P., “Additional limit theorem for indecomposable multidimensional Galton—Watson processes”, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR | Zbl
[15] Khakimov R. M., Madgoziyev G. T., “Weakly periodic Gibbs measures for two and three state HC models on a Cayley tree”, Uzb. Math. J., 3 (2018), 116–131 | DOI | MR | Zbl
[16] Külske C., Rozikov U. A., “Extremality of translation-invariant phases for a three-state SOS-model on the binary tree”, J. Stat. Phys., 160:3 (2015), 659–680 | DOI | MR | Zbl
[17] Külske C., Rozikov U. A., “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR | Zbl
[18] Martin J. B., “Reconstruction thresholds on regular trees”, Discrete random walks, DRW'03, Proceedings of the conference (Paris, France, September 1–5, 2003), MIMD, Paris, 2003, 191–204 | MR | Zbl
[19] Martinelli F., Sinclair A., Weitz D., “Fast mixing for independent sets, coloring and other models on trees”, Random Structures Algoritms, 31 (2007), 134–172 | DOI | MR | Zbl
[20] Mazel A. E., Suhov Yu. M., “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Stat. Phys., 64 (1991), 111–134 | DOI | MR | Zbl
[21] Mossel E., “Reconstruction on trees: beating the second eigenvalue”, Ann. Appl. Probab., 11:1 (2001), 285–300 | DOI | MR | Zbl
[22] Mossel E., Peres Y., “Information flow on trees”, Ann. Appl. Probab., 13:3 (2003), 817–844 | DOI | MR | Zbl
[23] Preston C. J., Gibbs states on countable sets, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[24] Rozikov U. A., Gibbs measures on Cayley trees, World Sci, Singapore, 2013 | MR | Zbl
[25] Suhov Yu. M., Rozikov U. A., “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46 (2004), 197–212 | DOI | MR | Zbl