Gibbs periodic measures for a two-state HC-model on a Cayley tree
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 95-109

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a two-state Hard-Core (HC) model with activity $\lambda>0$ on a Cayley tree of order $k\geq 2.$ It is known that there are $\lambda_{\rm cr},$ $\lambda ^0_{\rm cr},$ and $\lambda'_{\rm cr}$ such that for $\lambda\leq \lambda_{\rm cr}$ this model has a unique Gibbs measure $\mu^*,$ which is translation invariant. The measure $\mu^*$ is extreme for $\lambda\lambda^0_{\rm cr}$ and not extreme for $\lambda>\lambda'_{\rm cr};$ for $\lambda>\lambda_{\rm cr}$ there exist exactly three $2$-periodic Gibbs measures, one of which is $\mu^*,$ the other two are not translation-invariant and are always extreme. The extremity of these periodic measures was proved using the maximality and minimality of the corresponding solutions of some equation, which ensures the consistency of these measures. In this paper, we give a brief overview of the known Gibbs measures for the HC-model and an alternative proof of the extremity of $2$-periodic measures for $k=2,3.$ Our proof is based on the tree reconstruction method.
@article{CMFD_2022_68_1_a7,
     author = {U. A. Rozikov and R. M. Khakimov and M. T. Makhammadaliev},
     title = {Gibbs periodic measures for a two-state {HC-model} on a {Cayley} tree},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - R. M. Khakimov
AU  - M. T. Makhammadaliev
TI  - Gibbs periodic measures for a two-state HC-model on a Cayley tree
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 95
EP  - 109
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/
LA  - ru
ID  - CMFD_2022_68_1_a7
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A R. M. Khakimov
%A M. T. Makhammadaliev
%T Gibbs periodic measures for a two-state HC-model on a Cayley tree
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 95-109
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/
%G ru
%F CMFD_2022_68_1_a7
U. A. Rozikov; R. M. Khakimov; M. T. Makhammadaliev. Gibbs periodic measures for a two-state HC-model on a Cayley tree. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 95-109. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/