Gibbs periodic measures for a two-state HC-model on a Cayley tree
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 95-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a two-state Hard-Core (HC) model with activity $\lambda>0$ on a Cayley tree of order $k\geq 2.$ It is known that there are $\lambda_{\rm cr},$ $\lambda ^0_{\rm cr},$ and $\lambda'_{\rm cr}$ such that for $\lambda\leq \lambda_{\rm cr}$ this model has a unique Gibbs measure $\mu^*,$ which is translation invariant. The measure $\mu^*$ is extreme for $\lambda\lambda^0_{\rm cr}$ and not extreme for $\lambda>\lambda'_{\rm cr};$ for $\lambda>\lambda_{\rm cr}$ there exist exactly three $2$-periodic Gibbs measures, one of which is $\mu^*,$ the other two are not translation-invariant and are always extreme. The extremity of these periodic measures was proved using the maximality and minimality of the corresponding solutions of some equation, which ensures the consistency of these measures. In this paper, we give a brief overview of the known Gibbs measures for the HC-model and an alternative proof of the extremity of $2$-periodic measures for $k=2,3.$ Our proof is based on the tree reconstruction method.
@article{CMFD_2022_68_1_a7,
     author = {U. A. Rozikov and R. M. Khakimov and M. T. Makhammadaliev},
     title = {Gibbs periodic measures for a two-state {HC-model} on a {Cayley} tree},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - R. M. Khakimov
AU  - M. T. Makhammadaliev
TI  - Gibbs periodic measures for a two-state HC-model on a Cayley tree
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 95
EP  - 109
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/
LA  - ru
ID  - CMFD_2022_68_1_a7
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A R. M. Khakimov
%A M. T. Makhammadaliev
%T Gibbs periodic measures for a two-state HC-model on a Cayley tree
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 95-109
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/
%G ru
%F CMFD_2022_68_1_a7
U. A. Rozikov; R. M. Khakimov; M. T. Makhammadaliev. Gibbs periodic measures for a two-state HC-model on a Cayley tree. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 95-109. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a7/

[1] Blekher P. M., Ganikhodzhaev N. N., “O chistykh fazakh modeli Izinga na reshetke Bete”, Teor. ver. i ee prim., 35:2 (1990), 920–930

[2] Ganikhodzhaev N. N., Rozikov U. A., “Opisanie periodicheskikh krainikh gibbsovskikh mer nekotorykh reshetochnykh modelei na dereve Keli”, Teor. mat. fiz., 111:1 (1997), 109–117 | MR | Zbl

[3] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992

[4] Rozikov U. A., Rakhmatullaev M. M., “Opisanie slabo periodicheskikh mer Gibbsa modeli Izinga na dereve Keli”, Teor. mat. fiz., 156:2 (2008), 292–302 | MR | Zbl

[5] Rozikov U. A., Khakimov R. M., “Uslovie edinstvennosti slaboperiodicheskoi gibbsovskoi mery dlya modeli zhestkoi serdtseviny”, Teor. mat. fiz., 173:1 (2012), 60–70 | Zbl

[6] Rozikov U. A., Khakimov R. M., “Krainost translyatsionno-invariantnoi mery Gibbsa dlya NS-modeli na dereve Keli”, Byull. in-ta mat., 2 (2019), 17–22

[7] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980

[8] Khakimov R. M., “Edinstvennost slabo periodicheskoi gibbsovskoi mery dlya HC-modeli”, Mat. zametki, 94:5 (2013), 796–800 | Zbl

[9] Khakimov R. M., “Slabo periodicheskie mery Gibbsa dlya NS-modeli dlya normalnogo delitelya indeksa chetyre”, Ukr. mat. zh., 67:10 (2015), 1409–1422

[10] Khakimov R. M., “HC-model na dereve Keli: translyatsionno-invariantnye mery Gibbsa”, Vestn. NUUz, 2:2 (2017), 245–251

[11] Khakimov R. M., “Slabo periodicheskie mery Gibbsa dlya NS-modelei na dereve Keli”, Sib. mat. zh., 59:1 (2018), 185–196 | MR | Zbl

[12] Khakimov R. M., Makhammadaliev M. T., Uslovie edinstvennosti i ne edinstvennosti slabo periodicheskikh mer Gibbsa dlya NS-modeli, 2019, arXiv: 1910.11772v1 [math.ph]

[13] Bleher P. M., Ruiz J., Zagrebnov V. A., “On the purity of the limiting Gibbs states for the Ising model on the Bethe lattice”, J. Stat. Phys., 79:2 (1995), 473–482 | DOI | MR | Zbl

[14] Kesten H., Stigum B. P., “Additional limit theorem for indecomposable multidimensional Galton—Watson processes”, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR | Zbl

[15] Khakimov R. M., Madgoziyev G. T., “Weakly periodic Gibbs measures for two and three state HC models on a Cayley tree”, Uzb. Math. J., 3 (2018), 116–131 | DOI | MR | Zbl

[16] Külske C., Rozikov U. A., “Extremality of translation-invariant phases for a three-state SOS-model on the binary tree”, J. Stat. Phys., 160:3 (2015), 659–680 | DOI | MR | Zbl

[17] Külske C., Rozikov U. A., “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR | Zbl

[18] Martin J. B., “Reconstruction thresholds on regular trees”, Discrete random walks, DRW'03, Proceedings of the conference (Paris, France, September 1–5, 2003), MIMD, Paris, 2003, 191–204 | MR | Zbl

[19] Martinelli F., Sinclair A., Weitz D., “Fast mixing for independent sets, coloring and other models on trees”, Random Structures Algoritms, 31 (2007), 134–172 | DOI | MR | Zbl

[20] Mazel A. E., Suhov Yu. M., “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Stat. Phys., 64 (1991), 111–134 | DOI | MR | Zbl

[21] Mossel E., “Reconstruction on trees: beating the second eigenvalue”, Ann. Appl. Probab., 11:1 (2001), 285–300 | DOI | MR | Zbl

[22] Mossel E., Peres Y., “Information flow on trees”, Ann. Appl. Probab., 13:3 (2003), 817–844 | DOI | MR | Zbl

[23] Preston C. J., Gibbs states on countable sets, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[24] Rozikov U. A., Gibbs measures on Cayley trees, World Sci, Singapore, 2013 | MR | Zbl

[25] Suhov Yu. M., Rozikov U. A., “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46 (2004), 197–212 | DOI | MR | Zbl