An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 25-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we investigate the question of obtaining the algebraic condition for the exponential stability of the numerical solution of the upwind difference scheme for the mixed problem posed for one-dimensional symmetric $t$-hyperbolic systems with constant coefficients and with dissipative boundary conditions. An a priori estimate for the numerical solution of the boundary-value difference problem is obtained. This estimate allows us to state the exponential stability of the numerical solution. A theorem on the exponential stability of the numerical solution of the boundary-value difference problem is proved. Easily verifiable algebraic conditions for the exponential stability of the numerical solution are given. The convergence of the numerical solution is proved.
@article{CMFD_2022_68_1_a2,
     author = {R. D. Aloev and D. E. Nematova},
     title = {An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/}
}
TY  - JOUR
AU  - R. D. Aloev
AU  - D. E. Nematova
TI  - An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 25
EP  - 40
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/
LA  - ru
ID  - CMFD_2022_68_1_a2
ER  - 
%0 Journal Article
%A R. D. Aloev
%A D. E. Nematova
%T An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 25-40
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/
%G ru
%F CMFD_2022_68_1_a2
R. D. Aloev; D. E. Nematova. An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 25-40. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/

[1] Alaev R. D., Khudaiberganov M. U., “Diskretnyi analog funktsii Lyapunova dlya giperbolicheskikh sistem”, Sovrem. mat. Fundam. napravl., 64:4 (2018), 591–602 | MR

[2] Blokhin A. M., Alaev R. D., Integraly energii i ikh prilozheniya k issledovaniyu ustoichivosti raznostnykh skhem, Izd-vo Novosibirskogo gos. un-ta, Novosibirsk, 1993 | MR

[3] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[4] Aloev R. D., Blokhin A. M., Hudayberganov M. U., “One class of stable difference schemes for hyperbolic system”, Am. J. Numer. Anal., 2:1 (2014), 85–89

[5] Aloev R. D., Davlatov Sh. O., Eshkuvatov Z. K., Nik Long N. M. A., “Uniqueness solution of the finite elements scheme for symmetric hyperbolic systems with variable coefficients”, Malays. J. Math. Sci., 10 (2016), 49–60 | MR

[6] Aloev R. D., Eshkuvatov Z. K., Davlatov Sh. O., Nik Long N. M. A., “Sufficient condition of stability of finite element method for symmetric t-hyperbolic systems with constant coefficients”, Comput. Math. Appl., 68 (2014), 1194–1204 | DOI | MR | Zbl

[7] Aloev R. D., Eshkuvatov Z. K., Khudoyberganov M. U., Nematova D. E., “The difference splitting scheme for hyperbolic systems with variable coefficients”, Math. Statist., 7 (2019), 82–89 | DOI | MR

[8] Aloev R. D., Eshkuvatov Z. K., Khudayberganov M. U., Nik Long N. M. A., “A discrete analogue of energy integral for a difference scheme for quasilinear hyperbolic systems”, Appl. Math., 9 (2018), 789–805 | DOI | MR

[9] Aloev R. D., Khudoyberganov M. U., Blokhin A. M., “Construction and research of adequate computational models for quasilinear hyperbolic systems”, Numer. Algebra Control Optim., 8:3 (2018), 287–299 | DOI | MR

[10] Bastin G., Coron J.-M., Stability and boundary stabilization of 1-D hyperbolic systems, Birkhäuser, Basel, 2016 | MR | Zbl

[11] Göttlich S., Schillen P., “Numerical Discretization of Boundary Control Problems for Systems of Balance Laws: Feedback Stabilization”, Eur. J. Control, 35 (2017), 11–18 | DOI | MR | Zbl