Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a2, author = {R. D. Aloev and D. E. Nematova}, title = {An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {25--40}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/} }
TY - JOUR AU - R. D. Aloev AU - D. E. Nematova TI - An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 25 EP - 40 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/ LA - ru ID - CMFD_2022_68_1_a2 ER -
%0 Journal Article %A R. D. Aloev %A D. E. Nematova %T An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 25-40 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/ %G ru %F CMFD_2022_68_1_a2
R. D. Aloev; D. E. Nematova. An algebraic condition for the exponential stability of an upwind difference scheme for hyperbolic systems. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 25-40. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a2/
[1] Alaev R. D., Khudaiberganov M. U., “Diskretnyi analog funktsii Lyapunova dlya giperbolicheskikh sistem”, Sovrem. mat. Fundam. napravl., 64:4 (2018), 591–602 | MR
[2] Blokhin A. M., Alaev R. D., Integraly energii i ikh prilozheniya k issledovaniyu ustoichivosti raznostnykh skhem, Izd-vo Novosibirskogo gos. un-ta, Novosibirsk, 1993 | MR
[3] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR
[4] Aloev R. D., Blokhin A. M., Hudayberganov M. U., “One class of stable difference schemes for hyperbolic system”, Am. J. Numer. Anal., 2:1 (2014), 85–89
[5] Aloev R. D., Davlatov Sh. O., Eshkuvatov Z. K., Nik Long N. M. A., “Uniqueness solution of the finite elements scheme for symmetric hyperbolic systems with variable coefficients”, Malays. J. Math. Sci., 10 (2016), 49–60 | MR
[6] Aloev R. D., Eshkuvatov Z. K., Davlatov Sh. O., Nik Long N. M. A., “Sufficient condition of stability of finite element method for symmetric t-hyperbolic systems with constant coefficients”, Comput. Math. Appl., 68 (2014), 1194–1204 | DOI | MR | Zbl
[7] Aloev R. D., Eshkuvatov Z. K., Khudoyberganov M. U., Nematova D. E., “The difference splitting scheme for hyperbolic systems with variable coefficients”, Math. Statist., 7 (2019), 82–89 | DOI | MR
[8] Aloev R. D., Eshkuvatov Z. K., Khudayberganov M. U., Nik Long N. M. A., “A discrete analogue of energy integral for a difference scheme for quasilinear hyperbolic systems”, Appl. Math., 9 (2018), 789–805 | DOI | MR
[9] Aloev R. D., Khudoyberganov M. U., Blokhin A. M., “Construction and research of adequate computational models for quasilinear hyperbolic systems”, Numer. Algebra Control Optim., 8:3 (2018), 287–299 | DOI | MR
[10] Bastin G., Coron J.-M., Stability and boundary stabilization of 1-D hyperbolic systems, Birkhäuser, Basel, 2016 | MR | Zbl
[11] Göttlich S., Schillen P., “Numerical Discretization of Boundary Control Problems for Systems of Balance Laws: Feedback Stabilization”, Eur. J. Control, 35 (2017), 11–18 | DOI | MR | Zbl