On the inequalities for moments of branching random processes
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 157-166
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider branching random processes with immigration starting from a random number of items. In this work, we provide estimates from above for the moments of such processes.
@article{CMFD_2022_68_1_a11,
author = {Ya. M. Khusanbayev and Kh. E. Kudratov},
title = {On the inequalities for moments of branching random processes},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {157--166},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/}
}
TY - JOUR AU - Ya. M. Khusanbayev AU - Kh. E. Kudratov TI - On the inequalities for moments of branching random processes JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 157 EP - 166 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/ LA - ru ID - CMFD_2022_68_1_a11 ER -
%0 Journal Article %A Ya. M. Khusanbayev %A Kh. E. Kudratov %T On the inequalities for moments of branching random processes %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 157-166 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/ %G ru %F CMFD_2022_68_1_a11
Ya. M. Khusanbayev; Kh. E. Kudratov. On the inequalities for moments of branching random processes. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 157-166. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/