On the inequalities for moments of branching random processes
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 157-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider branching random processes with immigration starting from a random number of items. In this work, we provide estimates from above for the moments of such processes.
@article{CMFD_2022_68_1_a11,
     author = {Ya. M. Khusanbayev and Kh. E. Kudratov},
     title = {On the inequalities for moments of branching random processes},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {157--166},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/}
}
TY  - JOUR
AU  - Ya. M. Khusanbayev
AU  - Kh. E. Kudratov
TI  - On the inequalities for moments of branching random processes
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 157
EP  - 166
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/
LA  - ru
ID  - CMFD_2022_68_1_a11
ER  - 
%0 Journal Article
%A Ya. M. Khusanbayev
%A Kh. E. Kudratov
%T On the inequalities for moments of branching random processes
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 157-166
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/
%G ru
%F CMFD_2022_68_1_a11
Ya. M. Khusanbayev; Kh. E. Kudratov. On the inequalities for moments of branching random processes. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 157-166. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a11/

[1] Vatutin V. A., Vetvyaschiesya protsessy i ikh primeneniya, MIAN, M., 2008

[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971

[3] Asmussen S., Hering H., Branching processes, Birkhauser, Boston etc., 1983 | MR | Zbl

[4] Athreya K. B., Ney P. E., Branching processes, Springer, New York—Heidelberg, 1972 | MR | Zbl

[5] Barczy M., Nedenyi F. K., Pap G., On aggregation of multitype Galton—Watson branching processes with immigration, 2018, arXiv: 1711.04099v2 [math.PR] | MR

[6] Harris T. E., The theory of branching processes, Springer, Berlin—Göttingen—Heidelberg, 1963 | Zbl

[7] Kevei P., Wiandt P., Moments of the stationary distribution of subkritical multitype Galton—Watson processes with immigration, 2020, arXiv: 2002.08848v1 [math.PR] | MR

[8] Lin Z., Bai Z., Probability inequalities, Springer, Berlin—Heidelberg, 2010 | MR | Zbl

[9] Nagaev S. V., “Probabilistic inequalities for the Galton—Watson processes”, Theory Probab. Appl., 59 (2015), 611–640 | DOI | MR | Zbl

[10] Petrov V. V., Sums of independent random variables, Springer, Berlin, 1972 | MR