Smoothness of solutions to the damping problem for nonstationary control system with delay
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the damping problem for a nonstationary control system described by a system of differential-difference equations of neutral type with smooth matrix coefficients and several delays. This problem is equivalent to the boundary-value problem for a system of second-order differential-difference equations, which has a unique generalized solution. It is proved that the smoothness of this solution can be violated on the considered interval and is preserved only on some subintervals. Sufficient conditions for the initial function are obtained to ensure the smoothness of the generalized solution over the entire interval.
@article{CMFD_2022_68_1_a1,
     author = {A. Sh. Adkhamova},
     title = {Smoothness of solutions to the damping problem for nonstationary control system with delay},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a1/}
}
TY  - JOUR
AU  - A. Sh. Adkhamova
TI  - Smoothness of solutions to the damping problem for nonstationary control system with delay
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 14
EP  - 24
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a1/
LA  - ru
ID  - CMFD_2022_68_1_a1
ER  - 
%0 Journal Article
%A A. Sh. Adkhamova
%T Smoothness of solutions to the damping problem for nonstationary control system with delay
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 14-24
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a1/
%G ru
%F CMFD_2022_68_1_a1
A. Sh. Adkhamova. Smoothness of solutions to the damping problem for nonstationary control system with delay. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 14-24. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a1/

[1] Adkhamova A. Sh., Skubachevskii A. L., “Ob odnoi zadache uspokoeniya nestatsionarnoi sistemy upravleniya s posledeistviem”, Sovrem. mat. Fundam. napravl., 65:4 (2019), 547–556 | MR

[2] Adkhamova A. Sh., Skubachevskii A. L., “Ob uspokoenii sistemy upravleniya s posledeistviem neitralnogo tipa”, Dokl. RAN, 490:1 (2020), 81–84 | Zbl

[3] Kamenskii A. G., “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Diff. uravn., 10:5 (1976), 815–824

[4] Kamenskii G. A., Myshkis A. D., “K postanovke kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom i neskolkimi starshimi chlenami”, Diff. uravn., 10:3 (1974), 409–418 | MR | Zbl

[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[6] Kryazhimskii A. V., Maksimov V. I., Osipov Yu. S., “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. mat. mekh., 47:6 (1983), 883–890 | MR

[7] Leonov D. D., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Sovrem. mat. Fundam. napravl., 37 (2010), 28–37

[8] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Diff. uravn., 1:5 (1965), 605–618 | Zbl

[9] Skubachevskii A. L., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Dokl. RAN, 335:2 (1994), 157–160 | MR | Zbl

[10] Skubachevskii A. L., Ivanov N. O., “Vtoraya kraevaya zadacha dlya differentsialno-raznostnykh uravnenii”, Dokl. RAN, 500:1 (2021), 74–77 | Zbl

[11] Skubachevskii A. L., Ivanov N. O., “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Sovrem. mat. Fundam. napravl., 67:3 (2021), 576–595 | MR

[12] Adkhamova A. S., Skubachevskii A. L., “Damping Problem for Multidimensional Control System with Delays”, Distrib. Comput. Commun. Networks, 678 (2016), 612–623 | DOI | Zbl

[13] Banks H. T., Kent G. A., “Control of functional differential equations of retarded and neutral type to target sets in function space”, SIAM J. Control, 10:4 (1972), 567–593 | DOI | MR | Zbl

[14] Kent G. A., “A maximum principle for optimal control problems with neutral functional differential systems”, Bull. Am. Math. Soc., 77:4 (1971), 565–570 | DOI | MR | Zbl

[15] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhauser, Basel—Boston—Berlin, 1997 | MR | Zbl