Fokas method for the heat equation on metric graphs
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 766-782.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a method for constructing solutions to initial-boundary value problems for the heat equation on simple metric graphs such as a star-shaped graph, a tree, and a triangle with three converging edges. The solutions to the problems are constructed by the so-called Fokas method, which is a generalization of the Fourier transform method. In this case, the problem is reduced to a system of algebraic equations for the Fourier transform of the unknown values of the solution at the vertices of the graph.
@article{CMFD_2021_67_4_a8,
     author = {Z. A. Sobirov and M. R. Eshimbetov},
     title = {Fokas method for the heat equation on metric graphs},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {766--782},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/}
}
TY  - JOUR
AU  - Z. A. Sobirov
AU  - M. R. Eshimbetov
TI  - Fokas method for the heat equation on metric graphs
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 766
EP  - 782
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/
LA  - ru
ID  - CMFD_2021_67_4_a8
ER  - 
%0 Journal Article
%A Z. A. Sobirov
%A M. R. Eshimbetov
%T Fokas method for the heat equation on metric graphs
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 766-782
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/
%G ru
%F CMFD_2021_67_4_a8
Z. A. Sobirov; M. R. Eshimbetov. Fokas method for the heat equation on metric graphs. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 766-782. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/

[1] Volkova A. S., “Obobschennye resheniya kraevoi zadachi dlya uravneniya teploprovodnosti na grafe”, Vestn. SPb. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 3 (2013), 39–47

[2] Merkov A. B., “Uravnenie teploprovodnosti na grafakh”, Usp. mat. nauk, 42:5 (1987), 213–214 | MR | Zbl

[3] Ablowitz M. J., Fokas A. S., Complex variables introduction and applications second edition, Cambridge Univ. Press, Cambridge, 2003

[4] Albert R., Barabasi A. L., “Statistical mechanics of complex networks”, Rev. Mod. Phys. A, 74:4 (2002), 62–76

[5] Berkolaiko G., “An elementary introduction to quantum graphs”, Geometric and Computational Spectral Theory, Am. Math. Soc., Providence, 2017, 41–72 | DOI | Zbl

[6] Cohen R., Havlin S., Complex networks: Structure, robustness and function, Cambridge Univ. Press, Cambridge, 2010 | Zbl

[7] Exner P., Post O., “A General approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds”, Commun. Math. Phys., 1322 (2013), 207–227 | DOI

[8] Fokas A. S., “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. R. Soc. Lond. Ser. A, 453:1962 (1997), 1411–1443 | DOI | Zbl

[9] Fokas A. S., A unified approach to boundary value problems, SIAM, Philadelphia, 2008 | Zbl

[10] Fokas A. S., Fokas method (unified transform), Preprint, Jan. 25, 2017 http://www.damtp.cam.ac.uk/user/examples/3N15.pdf

[11] Gnutzmann S., Keating J. P., Piotet F., “Eigenfunction statistics on quantum graphs”, Ann. Phys., 325:12 (2010), 2595–2640 | DOI | Zbl

[12] Gnutzmann S., Smilansky U., “Quantum graphs: Applications to quantum chaos and universal spectral statistics”, Adv. Phys., 55 (2006), 527–625 | DOI

[13] Kesici E., Pelloni B., Pryer T., Smith D. A., “A numerical implementation of the unified Fokas transform for evolution problems on a finite interval”, Eur. J. Appl. Math., 29:3 (2017), 543–567 | DOI | MR

[14] Khudayberganov G., Sobirov Z. A., Eshimbetov M. R., “Unified transform method for the Schrödinger equation on a simple metric graph”, Zhurn. SFU. Ser. Mat. Fiz., 12:4 (2019), 412–420 | MR | Zbl

[15] Khudayberganov G., Sobirov Z. A., Eshimbetov M. R., “The Fokas' unified transformation method for heat equation on general star graph”, Uzb. Math. J., 2019, no. 1, 73–81 | MR | Zbl

[16] Sheils N. E., Interface problems using the Fokas method, Diss. dokt. nauk, University of Washington, Washington, 2015

[17] Sheils N. E., “Multilayer diffusion in a composite medium with imperfect contact”, Appl. Math. Modelling., 46 (2017), 450–464 | DOI | MR | Zbl

[18] Sheils N. E., Smith A. D., “Heat equation on a network using the Fokas method”, J. Phys. A. Math. Theor., 48 (2015), 335001 | DOI | MR | Zbl

[19] Uecker H., Grieser D., Sobirov Z. A., Babajanov D., Matrasulov D., “Soliton transport in tubular networks: Transmission at vertices in the shrinking limit”, Phys. Rev. E., 91 (2015), 023209 | DOI | MR