Fokas method for the heat equation on metric graphs
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 766-782
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents a method for constructing solutions to initial-boundary value problems for the heat equation on simple metric graphs such as a star-shaped graph, a tree, and a triangle with three converging edges. The solutions to the problems are constructed by the so-called Fokas method, which is a generalization of the Fourier transform method. In this case, the problem is reduced to a system of algebraic equations for the Fourier transform of the unknown values of the solution at the vertices of the graph.
@article{CMFD_2021_67_4_a8,
author = {Z. A. Sobirov and M. R. Eshimbetov},
title = {Fokas method for the heat equation on metric graphs},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {766--782},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/}
}
TY - JOUR AU - Z. A. Sobirov AU - M. R. Eshimbetov TI - Fokas method for the heat equation on metric graphs JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 766 EP - 782 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/ LA - ru ID - CMFD_2021_67_4_a8 ER -
Z. A. Sobirov; M. R. Eshimbetov. Fokas method for the heat equation on metric graphs. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 766-782. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/