Fokas method for the heat equation on metric graphs
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 766-782

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a method for constructing solutions to initial-boundary value problems for the heat equation on simple metric graphs such as a star-shaped graph, a tree, and a triangle with three converging edges. The solutions to the problems are constructed by the so-called Fokas method, which is a generalization of the Fourier transform method. In this case, the problem is reduced to a system of algebraic equations for the Fourier transform of the unknown values of the solution at the vertices of the graph.
@article{CMFD_2021_67_4_a8,
     author = {Z. A. Sobirov and M. R. Eshimbetov},
     title = {Fokas method for the heat equation on metric graphs},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {766--782},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/}
}
TY  - JOUR
AU  - Z. A. Sobirov
AU  - M. R. Eshimbetov
TI  - Fokas method for the heat equation on metric graphs
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 766
EP  - 782
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/
LA  - ru
ID  - CMFD_2021_67_4_a8
ER  - 
%0 Journal Article
%A Z. A. Sobirov
%A M. R. Eshimbetov
%T Fokas method for the heat equation on metric graphs
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 766-782
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/
%G ru
%F CMFD_2021_67_4_a8
Z. A. Sobirov; M. R. Eshimbetov. Fokas method for the heat equation on metric graphs. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 766-782. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a8/