Statistical ergodic theorem in symmetric spaces for infinite measures
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 654-667.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\Omega, \mu)$ be a measurable space with $\sigma$-finite continuous measure, $\mu(\Omega) = \infty.$ A linear operator $T: L_1(\Omega) + L_\infty(\Omega)\to L_1(\Omega) + L_\infty(\Omega)$ is called the Dunford–Schwartz operator if $\|T(f)\|_1 \leqslant \|f\|_1$ (respectively, $\|T(f)\|_{\infty} \leqslant \|f\|_{\infty}$) for all $f\in L_1(\Omega)$ (respectively, $f\in L_\infty(\Omega)$). If $\{T_t\}_{t\geqslant 0} $ is a strongly continuous in $L_1(\Omega)$ semigroup of Dunford–Schwartz operators, then each operator $A_t(f) = \dfrac1t \int\limits_0^tT_s(f)ds \in L_1(\Omega),$ $f\in L_1(\Omega)$ has a unique extension to the Dunford–Schwartz operator, which is also denoted by $A_t,$ $t>0.$ It is proved that in the completely symmetric space $E(\Omega) \nsubseteq L_1$ of measurable functions on $(\Omega, \mu)$ the means $A_t$ converge strongly as $t\to +\infty$ for each strongly continuous in $L_1(\Omega)$ semigroup $\{T_t\}_{t\geqslant 0}$ of Dunford–Schwartz operators if and only if the norm $\|\cdot\|_{E(\Omega)} $ is order continuous.
@article{CMFD_2021_67_4_a3,
     author = {A. S. Veksler and V. I. Chilin},
     title = {Statistical ergodic theorem in symmetric spaces for infinite measures},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {654--667},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/}
}
TY  - JOUR
AU  - A. S. Veksler
AU  - V. I. Chilin
TI  - Statistical ergodic theorem in symmetric spaces for infinite measures
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 654
EP  - 667
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/
LA  - ru
ID  - CMFD_2021_67_4_a3
ER  - 
%0 Journal Article
%A A. S. Veksler
%A V. I. Chilin
%T Statistical ergodic theorem in symmetric spaces for infinite measures
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 654-667
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/
%G ru
%F CMFD_2021_67_4_a3
A. S. Veksler; V. I. Chilin. Statistical ergodic theorem in symmetric spaces for infinite measures. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 654-667. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/

[1] Veksler A. S., “Ergodicheskaya teorema v simmetrichnykh prostranstvakh”, Sib. mat. zh., 26:4 (1985), 189–191 | MR | Zbl

[2] Veksler A. S., “Statisticheskaya ergodicheskaya teorema v neseparabelnykh simmetrichnykh prostranstvakh funktsii”, Sib. mat. zh., 29:3 (1988), 183–185 | MR

[3] Veksler A. S., Statisticheskie ergodicheskie teoremy v perestanovochno-invariantnykh prostranstvakh izmerimykh funktsii, Lambert Academic Publishing, Beau Bassin, 2018

[4] Veksler A. S., Fedorov A. L., Simmetricheskie prostranstva i statisticheskie ergodicheskie teoremy dlya avtomofizmov i potokov, FAN, Tashkent, 2016

[5] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977

[6] Bennett C., Sharpley R., Interpolation of operators, Academic Press Inc, Boston, etc., 1988 | Zbl

[7] Chilin V., Cömez D., Litvinov S., Individual ergodic theorems for infinite measure, 2019, arXiv: 1907.04678v1 [math.FA]

[8] Chilin V., Litvinov S., Noncommutative weighted individual ergodic theorems with continuous time, 2018, arXiv: 1809.01788v1 [math.FA]

[9] Chilin V., Litvinov S., “Almost uniform and strong convergences in ergodic theorems for symmetric spaces”, Acta Math. Hungar., 157:1 (2019), 229–253 | DOI | MR | Zbl

[10] Chilin V., Litvinov S., “Noncommutative weighted individual ergodic theorems with continuous time”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23:2 (2020), 2050013 | DOI | MR | Zbl

[11] Chilin V. I., Veksler A. S., “Mean ergodic theorem in function symmetric spaces for infinite measure”, Uzb. Math. J., 2018, no. 1, 35–46 | DOI | MR | Zbl

[12] Dodds P. G., Dodds T. K., Pagter B., “Noncommutative Köthe duality”, Trans. Am. Math. Soc., 339 (1993), 717–750 | Zbl

[13] Dodds P. G., Dodds T. K., Sukochev F. A., “Banach—Saks properties in symmetric spaces of measurable operators”, Studia Math., 178 (2007), 125–166 | DOI | MR | Zbl

[14] Dunford N., Schwartz J. T., Linear operators, v. I, General theory, John Willey Sons, New York, etc., 1988

[15] Garsia A., Topics in almost everywhere convergence, Markham Publishing Company, Chicago, 1970 | Zbl

[16] Krein S. G., Petunin Ju. I., Semenov E. M., Interpolation of linear operators, Am. Math. Soc., Providence, 1982 | Zbl

[17] Krengel U., Ergodic theorems, Walter de Gruyter, Berlin—New York, 1985 | Zbl

[18] Rubshtein B. A., Muratov M. A., Grabarnik G. Ya., Pashkova Yu. S., Foundations of symmetric spaces of measurable functions. Lorentz, Marcinkiewicz and Orlicz spaces, Springer, Cham, 2016 | Zbl

[19] Sukochev F., Veksler A., “The Mean Ergodic Theorem in symmetric spaces”, C.R. Acad. Sci. Paris. Ser. I, 355 (2017), 559–562 | DOI | MR | Zbl

[20] Sukochev F., Veksler A., “The Mean Ergodic Theorem in symmetric spaces”, Studia Math., 245:3 (2019), 229–253 | DOI | MR | Zbl

[21] Vladimirov D. A., Boolean algebras in analysis, Kluwer Academic Publishers, Dordrecht, 2002 | Zbl

[22] Yosida K., Functional analysis, Springer Verlag, Berlin—Göttingen—Heidelberg, 1965 | Zbl