Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_4_a3, author = {A. S. Veksler and V. I. Chilin}, title = {Statistical ergodic theorem in symmetric spaces for infinite measures}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {654--667}, publisher = {mathdoc}, volume = {67}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/} }
TY - JOUR AU - A. S. Veksler AU - V. I. Chilin TI - Statistical ergodic theorem in symmetric spaces for infinite measures JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 654 EP - 667 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/ LA - ru ID - CMFD_2021_67_4_a3 ER -
A. S. Veksler; V. I. Chilin. Statistical ergodic theorem in symmetric spaces for infinite measures. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 654-667. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/
[1] Veksler A. S., “Ergodicheskaya teorema v simmetrichnykh prostranstvakh”, Sib. mat. zh., 26:4 (1985), 189–191 | MR | Zbl
[2] Veksler A. S., “Statisticheskaya ergodicheskaya teorema v neseparabelnykh simmetrichnykh prostranstvakh funktsii”, Sib. mat. zh., 29:3 (1988), 183–185 | MR
[3] Veksler A. S., Statisticheskie ergodicheskie teoremy v perestanovochno-invariantnykh prostranstvakh izmerimykh funktsii, Lambert Academic Publishing, Beau Bassin, 2018
[4] Veksler A. S., Fedorov A. L., Simmetricheskie prostranstva i statisticheskie ergodicheskie teoremy dlya avtomofizmov i potokov, FAN, Tashkent, 2016
[5] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977
[6] Bennett C., Sharpley R., Interpolation of operators, Academic Press Inc, Boston, etc., 1988 | Zbl
[7] Chilin V., Cömez D., Litvinov S., Individual ergodic theorems for infinite measure, 2019, arXiv: 1907.04678v1 [math.FA]
[8] Chilin V., Litvinov S., Noncommutative weighted individual ergodic theorems with continuous time, 2018, arXiv: 1809.01788v1 [math.FA]
[9] Chilin V., Litvinov S., “Almost uniform and strong convergences in ergodic theorems for symmetric spaces”, Acta Math. Hungar., 157:1 (2019), 229–253 | DOI | MR | Zbl
[10] Chilin V., Litvinov S., “Noncommutative weighted individual ergodic theorems with continuous time”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23:2 (2020), 2050013 | DOI | MR | Zbl
[11] Chilin V. I., Veksler A. S., “Mean ergodic theorem in function symmetric spaces for infinite measure”, Uzb. Math. J., 2018, no. 1, 35–46 | DOI | MR | Zbl
[12] Dodds P. G., Dodds T. K., Pagter B., “Noncommutative Köthe duality”, Trans. Am. Math. Soc., 339 (1993), 717–750 | Zbl
[13] Dodds P. G., Dodds T. K., Sukochev F. A., “Banach—Saks properties in symmetric spaces of measurable operators”, Studia Math., 178 (2007), 125–166 | DOI | MR | Zbl
[14] Dunford N., Schwartz J. T., Linear operators, v. I, General theory, John Willey Sons, New York, etc., 1988
[15] Garsia A., Topics in almost everywhere convergence, Markham Publishing Company, Chicago, 1970 | Zbl
[16] Krein S. G., Petunin Ju. I., Semenov E. M., Interpolation of linear operators, Am. Math. Soc., Providence, 1982 | Zbl
[17] Krengel U., Ergodic theorems, Walter de Gruyter, Berlin—New York, 1985 | Zbl
[18] Rubshtein B. A., Muratov M. A., Grabarnik G. Ya., Pashkova Yu. S., Foundations of symmetric spaces of measurable functions. Lorentz, Marcinkiewicz and Orlicz spaces, Springer, Cham, 2016 | Zbl
[19] Sukochev F., Veksler A., “The Mean Ergodic Theorem in symmetric spaces”, C.R. Acad. Sci. Paris. Ser. I, 355 (2017), 559–562 | DOI | MR | Zbl
[20] Sukochev F., Veksler A., “The Mean Ergodic Theorem in symmetric spaces”, Studia Math., 245:3 (2019), 229–253 | DOI | MR | Zbl
[21] Vladimirov D. A., Boolean algebras in analysis, Kluwer Academic Publishers, Dordrecht, 2002 | Zbl
[22] Yosida K., Functional analysis, Springer Verlag, Berlin—Göttingen—Heidelberg, 1965 | Zbl