Statistical ergodic theorem in symmetric spaces for infinite measures
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 654-667

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\Omega, \mu)$ be a measurable space with $\sigma$-finite continuous measure, $\mu(\Omega) = \infty.$ A linear operator $T: L_1(\Omega) + L_\infty(\Omega)\to L_1(\Omega) + L_\infty(\Omega)$ is called the Dunford–Schwartz operator if $\|T(f)\|_1 \leqslant \|f\|_1$ (respectively, $\|T(f)\|_{\infty} \leqslant \|f\|_{\infty}$) for all $f\in L_1(\Omega)$ (respectively, $f\in L_\infty(\Omega)$). If $\{T_t\}_{t\geqslant 0} $ is a strongly continuous in $L_1(\Omega)$ semigroup of Dunford–Schwartz operators, then each operator $A_t(f) = \dfrac1t \int\limits_0^tT_s(f)ds \in L_1(\Omega),$ $f\in L_1(\Omega)$ has a unique extension to the Dunford–Schwartz operator, which is also denoted by $A_t,$ $t>0.$ It is proved that in the completely symmetric space $E(\Omega) \nsubseteq L_1$ of measurable functions on $(\Omega, \mu)$ the means $A_t$ converge strongly as $t\to +\infty$ for each strongly continuous in $L_1(\Omega)$ semigroup $\{T_t\}_{t\geqslant 0}$ of Dunford–Schwartz operators if and only if the norm $\|\cdot\|_{E(\Omega)} $ is order continuous.
@article{CMFD_2021_67_4_a3,
     author = {A. S. Veksler and V. I. Chilin},
     title = {Statistical ergodic theorem in symmetric spaces for infinite measures},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {654--667},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/}
}
TY  - JOUR
AU  - A. S. Veksler
AU  - V. I. Chilin
TI  - Statistical ergodic theorem in symmetric spaces for infinite measures
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 654
EP  - 667
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/
LA  - ru
ID  - CMFD_2021_67_4_a3
ER  - 
%0 Journal Article
%A A. S. Veksler
%A V. I. Chilin
%T Statistical ergodic theorem in symmetric spaces for infinite measures
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 654-667
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/
%G ru
%F CMFD_2021_67_4_a3
A. S. Veksler; V. I. Chilin. Statistical ergodic theorem in symmetric spaces for infinite measures. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 654-667. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a3/