Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_4_a0, author = {A. A. Abduganiev and A. A. Azamov and A. Begaliev}, title = {Existence and uniqueness theorems for the {Pfaff} equation with continuous coefficients}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {609--619}, publisher = {mathdoc}, volume = {67}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a0/} }
TY - JOUR AU - A. A. Abduganiev AU - A. A. Azamov AU - A. Begaliev TI - Existence and uniqueness theorems for the Pfaff equation with continuous coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 609 EP - 619 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a0/ LA - ru ID - CMFD_2021_67_4_a0 ER -
%0 Journal Article %A A. A. Abduganiev %A A. A. Azamov %A A. Begaliev %T Existence and uniqueness theorems for the Pfaff equation with continuous coefficients %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 609-619 %V 67 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a0/ %G ru %F CMFD_2021_67_4_a0
A. A. Abduganiev; A. A. Azamov; A. Begaliev. Existence and uniqueness theorems for the Pfaff equation with continuous coefficients. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 609-619. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a0/
[1] Azamov A., Begaliev A. O., “Teorema suschestvovaniya i metod priblizhennogo resheniya dlya uravneniya Pfaffa s nepreryvnymi koeffitsientami”, Tr. IMM UrO RAN, 27, no. 3, 2021, 12–24
[2] Gaishun I. V., Vpolne razreshimye mnogomernye differentsialnye uravneniya, Editorial URSS, M., 2004
[3] Gaishun L. N., “O predstavlenii reshenii vpolne integriruemykh lineinykh sistem”, Diff. uravn., 14:4 (1978), 728–730 | MR | Zbl
[4] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971
[5] Perov A. I., “Ob odnom obobschenii teoremy Frobeniusa”, Diff. uravn., 5:10 (1969), 1881–1884 | Zbl
[6] Agarwal R. P., Lakshmikantham V., Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific, Singapore, 1993 | Zbl
[7] Araújo J. A. C., “On uniqueness criteria for systems of ordinary differential equations”, J. Math. Anal. Appl., 281 (2003), 264–275 | DOI | MR | Zbl
[8] Arutyunov A. V., “The coincidence point problem for set-valued mappings and Ulam—Hyers stability”, Dokl. Math., 89:2 (2014), 188–191 | DOI | MR | Zbl
[9] Azamov A., Begaliyev A. O., “Existence and uniqueness of the solution of a Cauchy problem for the Pfaff equation with continuous coefficients”, Uzb. Math. J., 2019, no. 2, 18–26 | DOI | Zbl
[10] Azamov A., Suvanov Sh., Tilavov A., “Studing of behavior at infinity of vector fields on poincare's sphere: revisited”, Qual. Theory Dyn. Syst., 14:1 (2015), 2–11
[11] Bedford E., Kalka M., “Foliations and complex Monge—Ampere equations”, Commun. Pure Appl. Math., 30 (1991), 543–571 | DOI
[12] Brunella M., Gustavo M. L., “Bounding the degree of solutions to Pfaff equations”, Publ. Mat., 44:2 (2000), 593–604 | DOI | MR | Zbl
[13] Cartan É., “Sur certaines expressions différentielles et le problème de Pfaff”, Ann. Sci. Éc. Norm. Supér. (3), 16 (1899), 239–332 | DOI | Zbl
[14] Cerveau D., Lins-Neto A., “Holomorphic foliations in $CP(2)$ having an invariant algebraic curve”, Ann. Inst. Fourier (Grenoble), 41:4 (1991), 883–903 | DOI | MR
[15] Coddington E. A., Levinson N., Theory of ordinary differential equations, TATA McGRAW-Hill Publishing Co. Ltd, New Dehli, 1987
[16] Coutinho S. C., “A constructive proof of the density of algebraic Pfaff equations without algebraic solutions”, Ann. Inst. Fourier (Grenoble), 57:5 (2007), 1611–1621 | DOI | MR | Zbl
[17] Dryuma V., “On geometrical properties of the spaces defined by the Pfaff equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 47:1 (2005), 69–84 | MR | Zbl
[18] Hakopian H. A., Tonoyan M. G., “Partial differential analogs of ordinary differential equations and systems”, New York J. Math., 10 (2004), 89–116 | MR | Zbl
[19] Han C. K., “Pfaffian systems of Frobenius type and solvability of generic overdetermined PDE systems”, Symmetries and Overdetermined Systems of Partial Differential Equations, Springer, New York, 2008, 421–429 | Zbl
[20] Hartman Ph., Ordinary differential equations, John Willey Sons, New York, 1964 | Zbl
[21] Howard R., Methods of thermodinamics, Blaisdell Publ. Comp, New York, 1965
[22] Izobov N. A., “On the existence of linear Pfaffian systems whose set of lower characteristic vectors has a positive plane mesure”, Differ. Equ., 33:12 (1997), 1626–1632 | MR | Zbl
[23] Izobov N. A., Platonov A. S., “Construction of a linear Pfaff equation with arbitrarily given characteristics and lower characteristic sets”, Differ. Equ., 34:12 (1998), 1600–1607 | MR | Zbl
[24] Jouanolou J. P., Equations de Pfaff algébriques, Springer-Verlag, Berlin—Heidelberg, 1979
[25] Lefschetz S., Differential equations: Geometric theory, Interscience Publishers, New York—London, 1963 | Zbl
[26] Luzatto S., Türeli S., War K., Integrability of continuous bundles, 2016, arXiv: 1606.00343v2 [math.CA]
[27] Luzatto S., Türeli S., War K., “A Frobenius theorem for corank-1 continuous distributions in dimensions two and three”, arXiv: 1411.5896v5 [math.DG]
[28] Mardare S., “On Pfaff systems with $L^p$ coefficients in dimension two”, C.R. Math. Acad. Sci. Paris, 340 (2005), 879–884 | DOI | MR | Zbl
[29] Mardare S., “On Pfaff systems with $L^p$ coefficients and their applications in differential geometry”, J. Math. Pures Appl., 84 (2005), 1659–1692 | DOI | MR | Zbl
[30] Mejstrik T., “Some remarks on Nagumo's theorem”, Czech. Math. J., 62 (2012), 235–242 | DOI | MR | Zbl
[31] Mendes L. G., “Bounding the degree of solutions to Pfaff equations”, Publ. Mat., 44:2 (2000), 593–604 | MR | Zbl
[32] Musen P., On the application of Pfaff's method in the theory of variations of astronomical constants, NASA, Washington, 1964
[33] Popescu P., Popescu M., “Some aspects concerning the dynamics given by Pfaff forms”, Physics AUC, 21 (2011), 195–202
[34] Rashevskiy K. S., Geometric theory of partial differential equations, Springer, New York, 2001
[35] Siu Y. T., Partial differential equations with compatibility condition, https://www.coursehero.com/file/8864495/Lecture-notes-1/
[36] Spichekovo N. V., “On the behaviour of integral surfaces of a Pfaff equation with a nonclosed singular curve”, Differ. Equ., 41:10 (2005), 1509–1513 | DOI | MR
[37] Unni K. R., Pfaffian differential expressions and equations, Master's degree thesis, Utah State Univ., Logan, 1961, 22 pp.
[38] Vasilevich N. D., Prokhorovich T. N., “A linear Pfaff system of three equations on $C{{P}^{m}}$”, Differ. Equ., 39:6 (2003), 896–898 | DOI | MR | Zbl
[39] Źoladek H., “On algebraic solutions of algebraic Pfaff equations”, Studia Math., 114:2 (1995), 117–126 | DOI | MR