Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations
Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 483-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

For autonomous delay differential equations $x'(t)=f(x_t)$ we construct a continuous semiflow of continuously differentiable solution operators $x_0\mapsto x_t$, $t\ge0$, on open subsets of the Fréchet space $C((-\infty,0],\mathbb{R}^n)$. For nonautonomous equations this yields a continuous process of differentiable solution operators. As an application, we obtain processes which incorporate all solutions of Volterra integro-differential equations $x'(t)=\int_0^tk(t,s)h(x(s))ds$.
@article{CMFD_2021_67_3_a5,
     author = {H.-O. Walther},
     title = {Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for {Volterra} integro-differential equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {483--506},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/}
}
TY  - JOUR
AU  - H.-O. Walther
TI  - Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 483
EP  - 506
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/
LA  - ru
ID  - CMFD_2021_67_3_a5
ER  - 
%0 Journal Article
%A H.-O. Walther
%T Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 483-506
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/
%G ru
%F CMFD_2021_67_3_a5
H.-O. Walther. Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 483-506. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/

[1] Bastiani A., “Applications différentiables et varietés de dimension infinie”, J. Anal. Math., 13 (1964), 1–114 | DOI | Zbl

[2] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O., Delay equations: functional-, complex- and nonlinear analysis, Springer, New York, 1995 | Zbl

[3] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Springer, New York, 1993 | Zbl

[4] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. Am. Math. Soc. (N.S.), 7 (1982), 65–222 | DOI | Zbl

[5] Hino Y., Murakami S., Naito T., Functional Differential Equations with Infinite Delay, Springer, Berlin, 1991 | Zbl

[6] Krisztin T., Lichnoe obschenie

[7] Krisztin T., Walther H. O., “Smoothness issues in differential equations with state-dependent delay”, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 95–112 | Zbl

[8] Matsunaga H., Murakami S., Nagabuchi Y., Nguyen V. M., “Center manifold theorem and stability for integral equations with infinite delay”, Funkcial. Ekvac., 58 (2015), 87–134 | DOI | Zbl

[9] Michal A. D., “Differential calculus in linear topological spaces”, Proc. Natl. Acad. Sci. USA, 24 (1938), 340–342 | DOI

[10] Rudin W., Functional analysis, McGraw-Hill, New York, 1973 | Zbl

[11] Schumacher K., “Existence and continuous dependence for functional-differential equations with unbounded delay”, Arch. Ration. Mech. Anal., 67 (1978), 315–335 | DOI | Zbl

[12] Sengadir T., “Semigroups on Fréchet spaces and equations with infinite delay”, Proc. Indian Acad. Sci. Math. Sci., 117 (2007), 71–84 | DOI | Zbl

[13] Walther H.-O., “Differential equations with locally bounded delay”, J. Differ. Equ., 252 (2012), 3001–3039 | DOI | Zbl

[14] Walther H. O., “Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb{R}^n)$”, Topol. Methods Nonlinear Anal., 48 (2016), 507–537 | Zbl

[15] Walther H. O., “Local invariant manifolds for delay differential equations with state space in $C^1((-\infty,0],\mathbb{R}^n)$”, Electron. J. Qual. Theory Differ. Equ., 85 (2016), 1–29 | DOI

[16] Walther H. O., “Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fréchet”, Contemp. Math. Fundam. Directions, 63, 2017, 543–556 | DOI

[17] Walther H. O., “Differentiability in Fréchet spaces and delay differential equations”, Electron. J. Qual. Theory Differ. Equ., 13 (2019), 1–44 | DOI