Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_3_a5, author = {H.-O. Walther}, title = {Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for {Volterra} integro-differential equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {483--506}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/} }
TY - JOUR AU - H.-O. Walther TI - Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 483 EP - 506 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/ LA - ru ID - CMFD_2021_67_3_a5 ER -
%0 Journal Article %A H.-O. Walther %T Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 483-506 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/ %G ru %F CMFD_2021_67_3_a5
H.-O. Walther. Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 483-506. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a5/
[1] Bastiani A., “Applications différentiables et varietés de dimension infinie”, J. Anal. Math., 13 (1964), 1–114 | DOI | Zbl
[2] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O., Delay equations: functional-, complex- and nonlinear analysis, Springer, New York, 1995 | Zbl
[3] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Springer, New York, 1993 | Zbl
[4] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. Am. Math. Soc. (N.S.), 7 (1982), 65–222 | DOI | Zbl
[5] Hino Y., Murakami S., Naito T., Functional Differential Equations with Infinite Delay, Springer, Berlin, 1991 | Zbl
[6] Krisztin T., Lichnoe obschenie
[7] Krisztin T., Walther H. O., “Smoothness issues in differential equations with state-dependent delay”, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 95–112 | Zbl
[8] Matsunaga H., Murakami S., Nagabuchi Y., Nguyen V. M., “Center manifold theorem and stability for integral equations with infinite delay”, Funkcial. Ekvac., 58 (2015), 87–134 | DOI | Zbl
[9] Michal A. D., “Differential calculus in linear topological spaces”, Proc. Natl. Acad. Sci. USA, 24 (1938), 340–342 | DOI
[10] Rudin W., Functional analysis, McGraw-Hill, New York, 1973 | Zbl
[11] Schumacher K., “Existence and continuous dependence for functional-differential equations with unbounded delay”, Arch. Ration. Mech. Anal., 67 (1978), 315–335 | DOI | Zbl
[12] Sengadir T., “Semigroups on Fréchet spaces and equations with infinite delay”, Proc. Indian Acad. Sci. Math. Sci., 117 (2007), 71–84 | DOI | Zbl
[13] Walther H.-O., “Differential equations with locally bounded delay”, J. Differ. Equ., 252 (2012), 3001–3039 | DOI | Zbl
[14] Walther H. O., “Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb{R}^n)$”, Topol. Methods Nonlinear Anal., 48 (2016), 507–537 | Zbl
[15] Walther H. O., “Local invariant manifolds for delay differential equations with state space in $C^1((-\infty,0],\mathbb{R}^n)$”, Electron. J. Qual. Theory Differ. Equ., 85 (2016), 1–29 | DOI
[16] Walther H. O., “Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fréchet”, Contemp. Math. Fundam. Directions, 63, 2017, 543–556 | DOI
[17] Walther H. O., “Differentiability in Fréchet spaces and delay differential equations”, Electron. J. Qual. Theory Differ. Equ., 13 (2019), 1–44 | DOI