Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action
Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 442-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present the numerical solution of the Stefan problem to calculate the temperature of the tungsten sample heated by the laser pulse. Mathematical modeling is carried out to analyze field experiments, where an instantaneous heating of the plate to $9000$ K is observed due to the effect of a heat flow on its surface and subsequent cooling. The problem is characterized by nonlinear coefficients and boundary conditions. An important role is played by the evaporation of the metal from the heated surface. Basing on Samarskii's approach, we choose to implement the method of continuous counting considering the heat conductivity equation in a uniform form in the entire domain using the Dirac delta function. The numerical method has the second order of approximation with respect to space, the interval of smoothing of the coefficients is $5$ K. As a result, we obtain the temperature distributions on the surface and in the cross section of the sample during cooling.
@article{CMFD_2021_67_3_a2,
     author = {D. E. Apushkinskaya and G. G. Lazareva},
     title = {Algorithm for the numerical solution of the {Stefan} problem and its application to calculations of the temperature of tungsten under impulse action},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {442--454},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - G. G. Lazareva
TI  - Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 442
EP  - 454
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/
LA  - ru
ID  - CMFD_2021_67_3_a2
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A G. G. Lazareva
%T Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 442-454
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/
%G ru
%F CMFD_2021_67_3_a2
D. E. Apushkinskaya; G. G. Lazareva. Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 442-454. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/

[1] Arutyunyan R. V., “Integralnye uravneniya zadachi Stefana i ikh prilozhenie pri modelirovanii ottaivaniya grunta”, nauchnoe izdanie MGTU im. N. E. Baumana, Nauka i obrazovanie, 10, MGTU, M., 2015, 347–419

[2] Breslavskii P. V., Mazhukin V. I., “Algoritm chislennogo resheniya gidrodinamicheskogo varianta zadachi Stefana pri pomoschi dinamicheski adaptiruyuschikhsya setok”, Mat. model., 3:10 (1991), 104–115

[3] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadach Stefana”, Zhurn. vych. mat. i mat. fiz., 5:5 (1965), 828–840

[4] Laevskii M. Yu., Kalinkin A. A., “Dvukhtemperaturnaya model gidratosoderzhaschei porody”, Mat. model., 22:4 (2010), 23–31 | Zbl

[5] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[6] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurn. vych. mat. i mat. fiz., 5:5 (1965), 816–827

[7] Taluts S. G., Eksperimentalnoe issledovanie teplofizicheskikh svoistv perekhodnykh metallov i splavov na osnove zheleza pri vysokikh temperaturakh, Diss. d.f.-m.n., Ekaterinburg, 2001

[8] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[9] Apushkinskaya D., Free boundary problems. Regularity properties near the fixed boundary, Springer, Cham, 2018 | Zbl

[10] Arakcheev A. S., Apushkinskaya D. E., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Lazareva G. G., Maksimova A. G., Popov V. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N., “Two-dimensional numerical simulation of tungsten melting under pulsed electron beam”, Fusion Eng. Design., 132 (2018), 13–17 | DOI

[11] Caffarelli L. A., “The smoothness of the free surface in a filtration problem”, Arch. Ration. Mech. Anal., 63 (1976), 77–86 | DOI | Zbl

[12] Caffarelli L. A., “The regularity of elliptic and parabolic free boundaries”, Bull. Am. Math. Soc., 82 (1976), 616–618 | DOI | Zbl

[13] Caffarelli L. A., “The regularity of free boundaries in higher dimensions”, Acta Math., 139:3-4 (1977), 155–184 | DOI

[14] Chen H., Min C., Gibou F., “A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate”, J. Comp. Phys., 228 (2009), 5803–5818 | DOI | Zbl

[15] Duvaut G., “Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré)”, C. R. Math. Acad. Sci. Paris, 276 (1973), 1461–1463 | Zbl

[16] Davis J. W., Smith P. D., “ITER material properties handbook”, J. Nucl. Mater., 233 (1996), 1593–1596 | DOI

[17] Duvaut G., “Two phases Stefan problem with varying specific heat coefficients”, An. Acad. Brasil. Ciênc., 47 (1975), 377–380 | Zbl

[18] Friedman A., Kinderlehrer D., “A one phase Stefan problem”, Indiana Univ. Math. J., 25:11 (1975), 1005–1035 | DOI

[19] Groot R., “Second order front tracking algorithm for Stefan problem on a regular grid”, J. Comp. Phys., 372 (2018), 956–971 | DOI | Zbl

[20] Ho C. Y., Powell R. W., Liley P. E., “Thermal conductivity of elements”, J. Phys. Chem. Ref. Data, 1 (1972), 279 | DOI

[21] Huang J. M., Shelley M., Stein D., “A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the immersed boundary smooth extension method”, J. Comp. Phys., 432 (2021), 110162 | DOI

[22] Ichikawa Y., Kikuchi N., “A one-phase multi-dimensional Stefan problem by the method of variational inequalities”, Internat. J. Numer. Methods Engrg., 14 (1979), 1197–1220 | DOI | Zbl

[23] Ichikawa Y., Kikuchi N., “Numerical methods for a two-phase Stefan problem by variational inequalities”, Internat. J. Numer. Methods Engrg., 14 (1979), 1221–1239 | DOI | Zbl

[24] Lamé G., Clapeyron B. P., “Mémoire sur la solidification parrefroidissement d'um globe solide”, Ann. Chem. Phys., 47 (1831), 250–256

[25] Lazareva G. G., Arakcheev A. S., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Maksimova A. G., Popov V. A., Shoshin A. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N., “Calculation of heat sink around cracks formed under pulsed heat load”, J. Phys. Conf. Ser., 894 (2017), 012120 | DOI

[26] Oberman A. M., Zwiers I., “Adaptive finite difference methods for nonlinear elliptic and parabolic partial defferential equations with free boundaries”, J. Sci. Comput., 68 (2012), 231–251 | DOI

[27] Pottlacher G., “Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase”, J. Non-Crystal. Solids, 250 (1999), 177–181 | DOI

[28] Stefan J., “Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere”, Sitzungsber. Österreich. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2, Math. Astron. Phys. Meteorol. Tech., 98 (1889), 965–983

[29] Vyacheslavov L., Arakcheev A., Burdakov A., Kandaurov I., Kasatov A., Kurkuchekov V., Mekler K., Popov V., Shoshin A., Skovorodin D., Trunev Y., Vasilyev A., “Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads”, AIP Conf. Proc., 1771 (2016), 060004 | DOI

[30] Wu Z.-C., Wang Q.-C., “Numerical approach to Stefan problem in a two-region and limited space”, Thermal Sci., 16:5 (2012), 1325–1330 | DOI