Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_3_a2, author = {D. E. Apushkinskaya and G. G. Lazareva}, title = {Algorithm for the numerical solution of the {Stefan} problem and its application to calculations of the temperature of tungsten under impulse action}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {442--454}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/} }
TY - JOUR AU - D. E. Apushkinskaya AU - G. G. Lazareva TI - Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 442 EP - 454 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/ LA - ru ID - CMFD_2021_67_3_a2 ER -
%0 Journal Article %A D. E. Apushkinskaya %A G. G. Lazareva %T Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 442-454 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/ %G ru %F CMFD_2021_67_3_a2
D. E. Apushkinskaya; G. G. Lazareva. Algorithm for the numerical solution of the Stefan problem and its application to calculations of the temperature of tungsten under impulse action. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 442-454. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a2/
[1] Arutyunyan R. V., “Integralnye uravneniya zadachi Stefana i ikh prilozhenie pri modelirovanii ottaivaniya grunta”, nauchnoe izdanie MGTU im. N. E. Baumana, Nauka i obrazovanie, 10, MGTU, M., 2015, 347–419
[2] Breslavskii P. V., Mazhukin V. I., “Algoritm chislennogo resheniya gidrodinamicheskogo varianta zadachi Stefana pri pomoschi dinamicheski adaptiruyuschikhsya setok”, Mat. model., 3:10 (1991), 104–115
[3] Budak B. M., Soloveva E. N., Uspenskii A. B., “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadach Stefana”, Zhurn. vych. mat. i mat. fiz., 5:5 (1965), 828–840
[4] Laevskii M. Yu., Kalinkin A. A., “Dvukhtemperaturnaya model gidratosoderzhaschei porody”, Mat. model., 22:4 (2010), 23–31 | Zbl
[5] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003
[6] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurn. vych. mat. i mat. fiz., 5:5 (1965), 816–827
[7] Taluts S. G., Eksperimentalnoe issledovanie teplofizicheskikh svoistv perekhodnykh metallov i splavov na osnove zheleza pri vysokikh temperaturakh, Diss. d.f.-m.n., Ekaterinburg, 2001
[8] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[9] Apushkinskaya D., Free boundary problems. Regularity properties near the fixed boundary, Springer, Cham, 2018 | Zbl
[10] Arakcheev A. S., Apushkinskaya D. E., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Lazareva G. G., Maksimova A. G., Popov V. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N., “Two-dimensional numerical simulation of tungsten melting under pulsed electron beam”, Fusion Eng. Design., 132 (2018), 13–17 | DOI
[11] Caffarelli L. A., “The smoothness of the free surface in a filtration problem”, Arch. Ration. Mech. Anal., 63 (1976), 77–86 | DOI | Zbl
[12] Caffarelli L. A., “The regularity of elliptic and parabolic free boundaries”, Bull. Am. Math. Soc., 82 (1976), 616–618 | DOI | Zbl
[13] Caffarelli L. A., “The regularity of free boundaries in higher dimensions”, Acta Math., 139:3-4 (1977), 155–184 | DOI
[14] Chen H., Min C., Gibou F., “A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate”, J. Comp. Phys., 228 (2009), 5803–5818 | DOI | Zbl
[15] Duvaut G., “Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré)”, C. R. Math. Acad. Sci. Paris, 276 (1973), 1461–1463 | Zbl
[16] Davis J. W., Smith P. D., “ITER material properties handbook”, J. Nucl. Mater., 233 (1996), 1593–1596 | DOI
[17] Duvaut G., “Two phases Stefan problem with varying specific heat coefficients”, An. Acad. Brasil. Ciênc., 47 (1975), 377–380 | Zbl
[18] Friedman A., Kinderlehrer D., “A one phase Stefan problem”, Indiana Univ. Math. J., 25:11 (1975), 1005–1035 | DOI
[19] Groot R., “Second order front tracking algorithm for Stefan problem on a regular grid”, J. Comp. Phys., 372 (2018), 956–971 | DOI | Zbl
[20] Ho C. Y., Powell R. W., Liley P. E., “Thermal conductivity of elements”, J. Phys. Chem. Ref. Data, 1 (1972), 279 | DOI
[21] Huang J. M., Shelley M., Stein D., “A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the immersed boundary smooth extension method”, J. Comp. Phys., 432 (2021), 110162 | DOI
[22] Ichikawa Y., Kikuchi N., “A one-phase multi-dimensional Stefan problem by the method of variational inequalities”, Internat. J. Numer. Methods Engrg., 14 (1979), 1197–1220 | DOI | Zbl
[23] Ichikawa Y., Kikuchi N., “Numerical methods for a two-phase Stefan problem by variational inequalities”, Internat. J. Numer. Methods Engrg., 14 (1979), 1221–1239 | DOI | Zbl
[24] Lamé G., Clapeyron B. P., “Mémoire sur la solidification parrefroidissement d'um globe solide”, Ann. Chem. Phys., 47 (1831), 250–256
[25] Lazareva G. G., Arakcheev A. S., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Maksimova A. G., Popov V. A., Shoshin A. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N., “Calculation of heat sink around cracks formed under pulsed heat load”, J. Phys. Conf. Ser., 894 (2017), 012120 | DOI
[26] Oberman A. M., Zwiers I., “Adaptive finite difference methods for nonlinear elliptic and parabolic partial defferential equations with free boundaries”, J. Sci. Comput., 68 (2012), 231–251 | DOI
[27] Pottlacher G., “Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase”, J. Non-Crystal. Solids, 250 (1999), 177–181 | DOI
[28] Stefan J., “Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere”, Sitzungsber. Österreich. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2, Math. Astron. Phys. Meteorol. Tech., 98 (1889), 965–983
[29] Vyacheslavov L., Arakcheev A., Burdakov A., Kandaurov I., Kasatov A., Kurkuchekov V., Mekler K., Popov V., Shoshin A., Skovorodin D., Trunev Y., Vasilyev A., “Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads”, AIP Conf. Proc., 1771 (2016), 060004 | DOI
[30] Wu Z.-C., Wang Q.-C., “Numerical approach to Stefan problem in a two-region and limited space”, Thermal Sci., 16:5 (2012), 1325–1330 | DOI