Stochastic Lagrange approach to viscous hydrodynamics
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 285-294

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is a survey of the author's results with modifications and preliminary information on the use of stochastic analysis on Sobolev groups of diffeomorphisms of a flat $n$-dimensional torus to describe the motion of viscous fluids (nonrandom ones). The main idea is to replace the covariant derivatives on the groups of diffeomorphisms in the equations introduced by D. Ebin and J. Marsden to describe ideal fluids by the so-called mean derivatives of random processes.
@article{CMFD_2021_67_2_a4,
     author = {Yu. E. Gliklikh},
     title = {Stochastic {Lagrange} approach to viscous hydrodynamics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {285--294},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Stochastic Lagrange approach to viscous hydrodynamics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 285
EP  - 294
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/
LA  - ru
ID  - CMFD_2021_67_2_a4
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Stochastic Lagrange approach to viscous hydrodynamics
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 285-294
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/
%G ru
%F CMFD_2021_67_2_a4
Yu. E. Gliklikh. Stochastic Lagrange approach to viscous hydrodynamics. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 285-294. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/