Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_2_a4, author = {Yu. E. Gliklikh}, title = {Stochastic {Lagrange} approach to viscous hydrodynamics}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {285--294}, publisher = {mathdoc}, volume = {67}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/} }
Yu. E. Gliklikh. Stochastic Lagrange approach to viscous hydrodynamics. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 285-294. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/
[1] K. Partasarati, Introduction to Probability and Measure Theory, Russian translation, Mir, M., 1988
[2] Arnol'd V., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier, 16:1 (1966), 319–361 | DOI | Zbl
[3] Azarina S. V., Gliklikh Yu. E., “Differential inclusions with mean derivatives”, Dyn. Syst. Appl., 16:1 (2007), 49–71 | Zbl
[4] Azarina S. V., Gliklikh Yu. E., “Stochastic differential equations and inclusions with mean derivatives relative to the past”, Int. J. Differ. Equ., 4:1 (2009), 27–41
[5] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92:1 (1970), 102–163 | DOI | Zbl
[6] Gliklikh Yu. E., “Solutions of Burgers—Reynolds and Navier—Stokes equations via stochastic perturbations of inviscid flows”, J. Nonlinear Math. Phys., 17, Suppl. 1 (2010), 15–29 | DOI | Zbl
[7] Gliklikh Yu. E., Global and stochastic analysis with applications to mathematical physics, Springer, London, 2011 | Zbl
[8] Gliklikh Yu. E., Zalygaeva M. E., “Non-Newtonian fluids and stochastic analysis on the groups of diffeomorphisms”, Appl. Anal., 94:6 (2015), 1116–1127 | DOI | Zbl
[9] Gliklikh Yu. E., Zalygaeva M. E., “On derivation of Oskolkov's equations for noncompressible viscous Kelvin—Voight fluid by stochastic analysis on the groups of diffeomorphisms”, Glob. Stoch. Anal., 6:2 (2019), 69–77
[10] Nelson E., “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI
[11] Nelson E., Dynamical theory of Brownian motion, Princeton Univ. Press, Princeton, 1967
[12] Nelson E., Quantum fluctuations, Princeton Univ. Press, Princeton, 1985 | Zbl