Stochastic Lagrange approach to viscous hydrodynamics
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 285-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is a survey of the author's results with modifications and preliminary information on the use of stochastic analysis on Sobolev groups of diffeomorphisms of a flat $n$-dimensional torus to describe the motion of viscous fluids (nonrandom ones). The main idea is to replace the covariant derivatives on the groups of diffeomorphisms in the equations introduced by D. Ebin and J. Marsden to describe ideal fluids by the so-called mean derivatives of random processes.
@article{CMFD_2021_67_2_a4,
     author = {Yu. E. Gliklikh},
     title = {Stochastic {Lagrange} approach to viscous hydrodynamics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {285--294},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Stochastic Lagrange approach to viscous hydrodynamics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 285
EP  - 294
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/
LA  - ru
ID  - CMFD_2021_67_2_a4
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Stochastic Lagrange approach to viscous hydrodynamics
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 285-294
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/
%G ru
%F CMFD_2021_67_2_a4
Yu. E. Gliklikh. Stochastic Lagrange approach to viscous hydrodynamics. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 285-294. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a4/

[1] K. Partasarati, Introduction to Probability and Measure Theory, Russian translation, Mir, M., 1988

[2] Arnol'd V., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier, 16:1 (1966), 319–361 | DOI | Zbl

[3] Azarina S. V., Gliklikh Yu. E., “Differential inclusions with mean derivatives”, Dyn. Syst. Appl., 16:1 (2007), 49–71 | Zbl

[4] Azarina S. V., Gliklikh Yu. E., “Stochastic differential equations and inclusions with mean derivatives relative to the past”, Int. J. Differ. Equ., 4:1 (2009), 27–41

[5] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92:1 (1970), 102–163 | DOI | Zbl

[6] Gliklikh Yu. E., “Solutions of Burgers—Reynolds and Navier—Stokes equations via stochastic perturbations of inviscid flows”, J. Nonlinear Math. Phys., 17, Suppl. 1 (2010), 15–29 | DOI | Zbl

[7] Gliklikh Yu. E., Global and stochastic analysis with applications to mathematical physics, Springer, London, 2011 | Zbl

[8] Gliklikh Yu. E., Zalygaeva M. E., “Non-Newtonian fluids and stochastic analysis on the groups of diffeomorphisms”, Appl. Anal., 94:6 (2015), 1116–1127 | DOI | Zbl

[9] Gliklikh Yu. E., Zalygaeva M. E., “On derivation of Oskolkov's equations for noncompressible viscous Kelvin—Voight fluid by stochastic analysis on the groups of diffeomorphisms”, Glob. Stoch. Anal., 6:2 (2019), 69–77

[10] Nelson E., “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI

[11] Nelson E., Dynamical theory of Brownian motion, Princeton Univ. Press, Princeton, 1967

[12] Nelson E., Quantum fluctuations, Princeton Univ. Press, Princeton, 1985 | Zbl