Right-sided invertibility of binomial functional operators and graded dichotomy
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 208-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the right-sided invertibility problem for binomial functional operators. It is known that such operators are invertible iff there exists dichotomy of solutions of the homogeneous equation. New property of solutions of the homogeneous equation named graded dichotomy is introduced and it is proved that right-sided invertibility of binomial functional operators is equivalent to existence of graded dichotomy.
@article{CMFD_2021_67_2_a1,
     author = {A. B. Antonevich},
     title = {Right-sided invertibility of binomial functional operators and graded dichotomy},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {208--236},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a1/}
}
TY  - JOUR
AU  - A. B. Antonevich
TI  - Right-sided invertibility of binomial functional operators and graded dichotomy
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 208
EP  - 236
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a1/
LA  - ru
ID  - CMFD_2021_67_2_a1
ER  - 
%0 Journal Article
%A A. B. Antonevich
%T Right-sided invertibility of binomial functional operators and graded dichotomy
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 208-236
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a1/
%G ru
%F CMFD_2021_67_2_a1
A. B. Antonevich. Right-sided invertibility of binomial functional operators and graded dichotomy. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 208-236. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a1/

[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988

[2] Antonevich A. B., “Kogerentnaya lokalnaya giperbolichnost lineinogo rasshireniya i suschestvennye spektry operatora vzveshennogo sdviga na otrezke”, Funkts. analiz i ego prilozh., 39:1 (2005), 52–69

[3] Antonevich A. B., Akhmatova A. A., “Spektralnye svoistva diskretnykh operatorov vzveshennogo sdviga”, Tr. inst. mat., 20:1 (2012), 14–21 | Zbl

[4] Antonevich A. B., Akhmatova A. A., Makovska Yu., “Otobrazheniya s razdelimoi dinamikoi i spektralnye svoistva porozhdennykh imi operatorov”, Mat. sb., 206:3 (2015), 3–34 | Zbl

[5] Antonevich A. B., Panteleeva E. V., “Pravostoronnie rezolventy diskretnykh operatorov vzveshennogo sdviga s matrichnymi vesami”, Probl. fiz., mat. i tekhn., 16:3 (2013), 45–54 | Zbl

[6] Antonevich A. B., Panteleeva E. V., “Pravostoronnyaya giperbolichnost operatorov, porozhdennykh otobrazheniyami tipa Morsa—Smeila”, Vestn. Grodnenskogo GU im. Ya. Kupaly. Ser. 2. Mat. Fiz. Inf., vych. tekhn. i upravl., 170:1 (2014), 65–72

[7] Antonevich A. B., Panteleeva E. V., “Korrektnye kraevye zadachi, pravostoronnyaya giperbolichnost i eksponentsialnaya dikhotomiya”, Mat. zametki, 100:1 (2016), 13–29 | Zbl

[8] Arkhipenko O. A., “Kraevye zadachi dlya raznostnykh uravnenii”, Tr. BGTU. Ser. 3. Fiz.-mat. nauki i inform., 206:1 (2018), 12–18

[9] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh sootnoshenii”, Usp. mat. nauk, 68:1 (2013), 77–128 | Zbl

[10] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984

[11] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969

[12] Daletskii Yu. L., Krein M. A., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[13] Diksme Zh., $C^\ast$-algebry i ikh predstavleniya, Nauka, M., 1974

[14] Zhikov V. V., “Nekotorye voprosy dopustimosti i dikhotomii. Printsip usredneniya”, Izv. AN. Ser. Mat., 40:6 (1976), 1380–1408 | Zbl

[15] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, Usp. mat. nauk, 46:2 (1991), 95–165 | Zbl

[16] Mardiev R., “Kriterii poluneterovosti odnogo klassa singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, Dokl. AN UzSSR, 2:2 (1985), 5–7 | Zbl

[17] Massera Kh. L., Sheffer Kh. Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970

[18] Merfi Dzh., $C^\ast$-algebry i teoriya operatorov, Faktorial, M., 1997

[19] Mischenko A. S., Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984

[20] Niteski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975

[21] Stevich C., Chen R., Chzhou Z., “Vzveshennye kompozitsionnye operatory, deistvuyuschie iz odnogo prostranstva Blokha v polidiske v drugoe”, Mat. sb., 201:2 (2010), 131–160

[22] Shukur Ali A., Arkhipenko O. A., “Rezolventa kraevoi zadachi dlya raznostnogo uravneniya”, Probl. fiz., mat. i tekhn., 28:3 (2016), 70–75 | Zbl

[23] Akhmatova A., Antonevich A., “On operators generated by maps with separable dynamics”, Proc. Conf. «Geometric Methods in Physics», XXXI Workshop (June 24–30, 2012, Poland), Birkhäuser, Basel, 171–178 | Zbl

[24] Antonevich A., Jakubowska (Makowska) Ju., “On spectral properties of weighted shift operators generated by mappings with saddle points”, Complex Anal. Oper. Theory, 2:2 (2008), 215–240 | DOI | Zbl

[25] Antonevich A., Jakubowska (Makowska) Ju., “Weighted translation operators generated by mappings with saddle points: a model class”, J. Math. Sci. (N.Y.), 164:4 (2010), 497–517 | DOI | Zbl

[26] Antonevich A., Lebedev A., Functional differential equations, v. I, C*-theory, Longman Scientific Technical, Harlow, 1994 | Zbl

[27] Antonevich A. B., Panteleeva E. V., “Right-side hyperbolic operators”, Sci. Publ. State Univ. Novi Pazar. Ser. A, 2014, no. 1, 1–9 | DOI

[28] Karlovich A. Yu., Karlovich Yu. I., “One-sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces”, Integral Equ. Oper. Theory, 42:2 (2002), 201–228 | DOI | Zbl

[29] Perron O., “Die Stabilitatsfrage bei Differentialgleichungen”, Math. Z., 32:5 (1930), 703–738 | DOI