Averaging of higher-order parabolic equations with periodic coefficients
Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb{R}^d;\mathbb{C}^n),$ we consider a wide class of matrix elliptic operators ${\mathcal A}_\varepsilon$ of order $2p$ (where $p \geqslant 2$) with periodic rapidly oscillating coefficients (depending on ${\mathbf x}/\varepsilon$). Here $\varepsilon >0$ is a small parameter. We study the behavior of the operator exponent $e^{- {\mathcal A}_\varepsilon \tau}$ for $\tau>0$ and small $\varepsilon.$ We show that the operator $e^{- {\mathcal A}_\varepsilon \tau}$ converges as $\varepsilon \to 0$ in the operator norm in $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the exponent $e^{- {\mathcal A}^0 \tau}$ of the effective operator ${\mathcal A}^0.$ Also we obtain an approximation of the operator exponent $e^{- {\mathcal A}_\varepsilon \tau}$ in the norm of operators acting from $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the Sobolev space $H^p(\mathbb{R}^d;\mathbb{C}^n).$ We derive estimates of errors of these approximations depending on two parameters: $\varepsilon$ и $\tau.$ For a fixed $\tau>0$ the errors have the exact order $O(\varepsilon).$ We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation $\partial_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = -({\mathcal A}_\varepsilon \mathbf{u}_\varepsilon)(\mathbf{x},\tau) + \mathbf{F}(\mathbf{x}, \tau)$ in $\mathbb{R}^d.$
@article{CMFD_2021_67_1_a2,
     author = {A. A. Miloslova and T. A. Suslina},
     title = {Averaging of higher-order parabolic equations with periodic coefficients},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {130--191},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/}
}
TY  - JOUR
AU  - A. A. Miloslova
AU  - T. A. Suslina
TI  - Averaging of higher-order parabolic equations with periodic coefficients
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 130
EP  - 191
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/
LA  - ru
ID  - CMFD_2021_67_1_a2
ER  - 
%0 Journal Article
%A A. A. Miloslova
%A T. A. Suslina
%T Averaging of higher-order parabolic equations with periodic coefficients
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 130-191
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/
%G ru
%F CMFD_2021_67_1_a2
A. A. Miloslova; T. A. Suslina. Averaging of higher-order parabolic equations with periodic coefficients. Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191. http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/

[1] N. S. Bakhvalov, G. P. Panasenko, Averaging Processes in Periodic Media, Nauka, M., 1984 (in Russian) | MR

[2] M. Sh. Birman, T. A. Suslina, “Second-order periodic differential operators. Threshold properties and averaging”, Algebra Anal., 15:5 (2003), 1–108 (in Russian)

[3] M. Sh. Birman, T. A. Suslina, “Threshold approximations of the resolvent of a factorized self-adjoint operator family with allowance for a corrector”, Algebra Anal., 17:5 (2005), 69–90 (in Russian)

[4] M. Sh. Birman, T. A. Suslina, “Averaging of periodic elliptic differential operators with a corrector”, Algebra Anal., 17:6 (2005), 1–104 (in Russian)

[5] M. Sh. Birman, T. A. Suslina, “Averaging of periodic differential operators taking into account the corrector. Approximation of solutions in the Sobolev class $H^1(\mathbb{R}^d)$”, Algebra Anal., 18:6 (2006), 1–130 (in Russian)

[6] E. S. Vasilevskaya, “Averaging of the parabolic Cauchy problem with periodic coefficients taking into account the corrector”, Algebra Anal., 21:1 (2009), 3–60 (in Russian) | MR

[7] N. A. Veniaminov, “Averaging of higher-order periodic differential operators”, Algebra Anal., 22:5 (2010), 69–103 (in Russian) | MR

[8] V. V. Zhikov, “Operator estimates in homogenization theory”, Rep. Russ. Acad. Sci., 403:3 (2005), 305–308 (in Russian) | MR | Zbl

[9] V. V. Zhikov, S. M. Kozlov, O. A. Oleynik, Homogenization of Differential Operators, Nauka, M., 1993 (in Russian) | MR

[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates in homogenization theory”, Progr. Math. Sci., 71:3 (2016), 27–122 (in Russian) | MR | Zbl

[11] T. Kato, Perturbation Theory for Linear Operators, Russian translation, Mir, M., 1972

[12] A. A. Kukushkin, T. A. Suslina, “Averaging of higher-order elliptic operators with periodic coefficients”, Algebra Anal., 28:1 (2016), 89–149 (in Russian)

[13] S. E. Pastukhova, “Operator estimates of averaging for fourth-order elliptic equations”, Algebra Anal., 28:2 (2016), 204–226 (in Russian)

[14] S. E. Pastukhova, “$L^2$-approximations of the resolvent in the averaging of elliptic higher-order operators”, Probl. Math. Anal., 107 (2020), 113–132 (in Russian) | Zbl

[15] S. E. Pastukhova, “$L^2$-approximations of the resolvent in the averaging of fourth-order elliptic operators”, Math. Digest, 212:1 (2021), 119–142 (in Russian) | MR | Zbl

[16] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Russian translation, Mir, M., 1984 | MR

[17] V. A. Sloushch, T. A. Suslina, “Averaging of a fourth-order elliptic operator with periodic coefficients taking into account correctors”, Funct. Anal. Appl., 54:3 (2020), 94–99 (in Russian) | MR

[18] V. A. Sloushch, T. A. Suslina, “Averaging of a fourth-order elliptic operator with periodic coefficients”, Collection of Materials of the International Conference KROMSH-2020, Poliprint, Simferopol, 2020, 186–188 (in Russian)

[19] V. A. Sloushch, T. A. Suslina, “Threshold approximations of the resolvent of a polynomial nonnegative operator pencil”, Algebra Anal., 33:2 (2021), 233–274 (in Russian)

[20] T. A. Suslina, “On averaging of periodic parabolic systems”, Funct. Anal. Appl., 38:4 (2004), 86–90 (in Russian) | MR | Zbl

[21] T. A. Suslina, “Averaging of elliptic operators with periodic coefficients depending on the spectral parameter”, Algebra Anal., 27:4 (2015), 87–166 (in Russian)

[22] A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, North Holland Publishing Co, Amsterdam–New York, 1978 | MR | Zbl

[23] Yu. M. Meshkova, “Note on quantitative homogenization results for parabolic systems in $\mathbb{R}^d$”, J. Evol. Equ., 2020 | DOI | MR

[24] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466 | DOI | MR | Zbl

[25] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc., Providence, 2007, 201–233 | MR | Zbl

[26] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[27] T. A. Suslina, “Homogenization of the higher-order Schrodinger-type equations with periodic coefficients”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS Publishing House, 2021, arXiv: 2011.13382

[28] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[29] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl