Averaging of higher-order parabolic equations with periodic coefficients
Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb{R}^d;\mathbb{C}^n),$ we consider a wide class of matrix elliptic operators ${\mathcal A}_\varepsilon$ of order $2p$ (where $p \geqslant 2$) with periodic rapidly oscillating coefficients (depending on ${\mathbf x}/\varepsilon$). Here $\varepsilon >0$ is a small parameter. We study the behavior of the operator exponent $e^{- {\mathcal A}_\varepsilon \tau}$ for $\tau>0$ and small $\varepsilon.$ We show that the operator $e^{- {\mathcal A}_\varepsilon \tau}$ converges as $\varepsilon \to 0$ in the operator norm in $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the exponent $e^{- {\mathcal A}^0 \tau}$ of the effective operator ${\mathcal A}^0.$ Also we obtain an approximation of the operator exponent $e^{- {\mathcal A}_\varepsilon \tau}$ in the norm of operators acting from $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the Sobolev space $H^p(\mathbb{R}^d;\mathbb{C}^n).$ We derive estimates of errors of these approximations depending on two parameters: $\varepsilon$ и $\tau.$ For a fixed $\tau>0$ the errors have the exact order $O(\varepsilon).$ We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation $\partial_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = -({\mathcal A}_\varepsilon \mathbf{u}_\varepsilon)(\mathbf{x},\tau) + \mathbf{F}(\mathbf{x}, \tau)$ in $\mathbb{R}^d.$
@article{CMFD_2021_67_1_a2,
     author = {A. A. Miloslova and T. A. Suslina},
     title = {Averaging of higher-order parabolic equations with periodic coefficients},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {130--191},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/}
}
TY  - JOUR
AU  - A. A. Miloslova
AU  - T. A. Suslina
TI  - Averaging of higher-order parabolic equations with periodic coefficients
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 130
EP  - 191
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/
LA  - ru
ID  - CMFD_2021_67_1_a2
ER  - 
%0 Journal Article
%A A. A. Miloslova
%A T. A. Suslina
%T Averaging of higher-order parabolic equations with periodic coefficients
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 130-191
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/
%G ru
%F CMFD_2021_67_1_a2
A. A. Miloslova; T. A. Suslina. Averaging of higher-order parabolic equations with periodic coefficients. Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191. http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/