Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_1_a2, author = {A. A. Miloslova and T. A. Suslina}, title = {Averaging of higher-order parabolic equations with periodic coefficients}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {130--191}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/} }
TY - JOUR AU - A. A. Miloslova AU - T. A. Suslina TI - Averaging of higher-order parabolic equations with periodic coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 130 EP - 191 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/ LA - ru ID - CMFD_2021_67_1_a2 ER -
%0 Journal Article %A A. A. Miloslova %A T. A. Suslina %T Averaging of higher-order parabolic equations with periodic coefficients %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 130-191 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/ %G ru %F CMFD_2021_67_1_a2
A. A. Miloslova; T. A. Suslina. Averaging of higher-order parabolic equations with periodic coefficients. Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191. http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/
[1] N. S. Bakhvalov, G. P. Panasenko, Averaging Processes in Periodic Media, Nauka, M., 1984 (in Russian) | MR
[2] M. Sh. Birman, T. A. Suslina, “Second-order periodic differential operators. Threshold properties and averaging”, Algebra Anal., 15:5 (2003), 1–108 (in Russian)
[3] M. Sh. Birman, T. A. Suslina, “Threshold approximations of the resolvent of a factorized self-adjoint operator family with allowance for a corrector”, Algebra Anal., 17:5 (2005), 69–90 (in Russian)
[4] M. Sh. Birman, T. A. Suslina, “Averaging of periodic elliptic differential operators with a corrector”, Algebra Anal., 17:6 (2005), 1–104 (in Russian)
[5] M. Sh. Birman, T. A. Suslina, “Averaging of periodic differential operators taking into account the corrector. Approximation of solutions in the Sobolev class $H^1(\mathbb{R}^d)$”, Algebra Anal., 18:6 (2006), 1–130 (in Russian)
[6] E. S. Vasilevskaya, “Averaging of the parabolic Cauchy problem with periodic coefficients taking into account the corrector”, Algebra Anal., 21:1 (2009), 3–60 (in Russian) | MR
[7] N. A. Veniaminov, “Averaging of higher-order periodic differential operators”, Algebra Anal., 22:5 (2010), 69–103 (in Russian) | MR
[8] V. V. Zhikov, “Operator estimates in homogenization theory”, Rep. Russ. Acad. Sci., 403:3 (2005), 305–308 (in Russian) | MR | Zbl
[9] V. V. Zhikov, S. M. Kozlov, O. A. Oleynik, Homogenization of Differential Operators, Nauka, M., 1993 (in Russian) | MR
[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates in homogenization theory”, Progr. Math. Sci., 71:3 (2016), 27–122 (in Russian) | MR | Zbl
[11] T. Kato, Perturbation Theory for Linear Operators, Russian translation, Mir, M., 1972
[12] A. A. Kukushkin, T. A. Suslina, “Averaging of higher-order elliptic operators with periodic coefficients”, Algebra Anal., 28:1 (2016), 89–149 (in Russian)
[13] S. E. Pastukhova, “Operator estimates of averaging for fourth-order elliptic equations”, Algebra Anal., 28:2 (2016), 204–226 (in Russian)
[14] S. E. Pastukhova, “$L^2$-approximations of the resolvent in the averaging of elliptic higher-order operators”, Probl. Math. Anal., 107 (2020), 113–132 (in Russian) | Zbl
[15] S. E. Pastukhova, “$L^2$-approximations of the resolvent in the averaging of fourth-order elliptic operators”, Math. Digest, 212:1 (2021), 119–142 (in Russian) | MR | Zbl
[16] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Russian translation, Mir, M., 1984 | MR
[17] V. A. Sloushch, T. A. Suslina, “Averaging of a fourth-order elliptic operator with periodic coefficients taking into account correctors”, Funct. Anal. Appl., 54:3 (2020), 94–99 (in Russian) | MR
[18] V. A. Sloushch, T. A. Suslina, “Averaging of a fourth-order elliptic operator with periodic coefficients”, Collection of Materials of the International Conference KROMSH-2020, Poliprint, Simferopol, 2020, 186–188 (in Russian)
[19] V. A. Sloushch, T. A. Suslina, “Threshold approximations of the resolvent of a polynomial nonnegative operator pencil”, Algebra Anal., 33:2 (2021), 233–274 (in Russian)
[20] T. A. Suslina, “On averaging of periodic parabolic systems”, Funct. Anal. Appl., 38:4 (2004), 86–90 (in Russian) | MR | Zbl
[21] T. A. Suslina, “Averaging of elliptic operators with periodic coefficients depending on the spectral parameter”, Algebra Anal., 27:4 (2015), 87–166 (in Russian)
[22] A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, North Holland Publishing Co, Amsterdam–New York, 1978 | MR | Zbl
[23] Yu. M. Meshkova, “Note on quantitative homogenization results for parabolic systems in $\mathbb{R}^d$”, J. Evol. Equ., 2020 | DOI | MR
[24] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466 | DOI | MR | Zbl
[25] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc., Providence, 2007, 201–233 | MR | Zbl
[26] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl
[27] T. A. Suslina, “Homogenization of the higher-order Schrodinger-type equations with periodic coefficients”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS Publishing House, 2021, arXiv: 2011.13382
[28] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[29] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl