Averaging of higher-order parabolic equations with periodic coefficients
Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191
Voir la notice de l'article provenant de la source Math-Net.Ru
In $L_2(\mathbb{R}^d;\mathbb{C}^n),$ we consider a wide class of matrix elliptic operators ${\mathcal A}_\varepsilon$ of order $2p$ (where $p \geqslant 2$) with periodic rapidly oscillating coefficients (depending on ${\mathbf x}/\varepsilon$). Here $\varepsilon >0$ is a small parameter. We study the behavior of the operator exponent $e^{- {\mathcal A}_\varepsilon \tau}$ for $\tau>0$ and small $\varepsilon.$ We show that the operator $e^{- {\mathcal A}_\varepsilon \tau}$ converges as $\varepsilon \to 0$ in the operator norm in $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the exponent $e^{- {\mathcal A}^0 \tau}$ of the effective operator ${\mathcal A}^0.$ Also we obtain an approximation of the operator exponent $e^{- {\mathcal A}_\varepsilon \tau}$ in the norm of operators acting from $L_2(\mathbb{R}^d;\mathbb{C}^n)$ to the Sobolev space $H^p(\mathbb{R}^d;\mathbb{C}^n).$ We derive estimates of errors of these approximations depending on two parameters: $\varepsilon$ и $\tau.$ For a fixed $\tau>0$ the errors have the exact order $O(\varepsilon).$ We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation $\partial_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = -({\mathcal A}_\varepsilon \mathbf{u}_\varepsilon)(\mathbf{x},\tau) + \mathbf{F}(\mathbf{x}, \tau)$ in $\mathbb{R}^d.$
@article{CMFD_2021_67_1_a2,
author = {A. A. Miloslova and T. A. Suslina},
title = {Averaging of higher-order parabolic equations with periodic coefficients},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {130--191},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/}
}
TY - JOUR AU - A. A. Miloslova AU - T. A. Suslina TI - Averaging of higher-order parabolic equations with periodic coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 130 EP - 191 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/ LA - ru ID - CMFD_2021_67_1_a2 ER -
%0 Journal Article %A A. A. Miloslova %A T. A. Suslina %T Averaging of higher-order parabolic equations with periodic coefficients %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 130-191 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/ %G ru %F CMFD_2021_67_1_a2
A. A. Miloslova; T. A. Suslina. Averaging of higher-order parabolic equations with periodic coefficients. Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 130-191. http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a2/