Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_1_a0, author = {V. E. Admasu and E. I. Galakhov and O. A. Salieva}, title = {Nonexistence of nontrivial weak solutions of some nonlinear inequalities with gradient nonlinearity}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {1--13}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a0/} }
TY - JOUR AU - V. E. Admasu AU - E. I. Galakhov AU - O. A. Salieva TI - Nonexistence of nontrivial weak solutions of some nonlinear inequalities with gradient nonlinearity JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 1 EP - 13 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a0/ LA - ru ID - CMFD_2021_67_1_a0 ER -
%0 Journal Article %A V. E. Admasu %A E. I. Galakhov %A O. A. Salieva %T Nonexistence of nontrivial weak solutions of some nonlinear inequalities with gradient nonlinearity %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 1-13 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a0/ %G ru %F CMFD_2021_67_1_a0
V. E. Admasu; E. I. Galakhov; O. A. Salieva. Nonexistence of nontrivial weak solutions of some nonlinear inequalities with gradient nonlinearity. Contemporary Mathematics. Fundamental Directions, Partial Differential Equations, Tome 67 (2021) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/CMFD_2021_67_1_a0/
[1] “Some partial differential inequalities with gradient terms”, Proc. Math. Inst. Russ. Acad. Sci., 283, 2013, 40–48 (in Russian) | Zbl
[2] “Blow-up of solutions of some nonlinear inequalities with singularities on unbounded sets”, Math. Notes, 98:2 (2015), 187–195 (in Russian) | Zbl
[3] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blowup of solutions of nonlinear partial differential equations and inequalities”, Proc. Math. Inst. Russ. Acad. Sci., 234, 2001, 3–383 (in Russian)
[4] S. I. Pohozaev, “Essentially nonlinear capacities generated by differential operators”, Rep. Russ. Acad. Sci., 357:5 (1997), 592–594 (in Russian) | MR | Zbl
[5] “Absence of solutions of some nonlinear inequalities with fractional powers of the Laplace operator”, Math. Notes, 101:4 (2017), 699–703 (in Russian) | Zbl
[6] A. Farina, J. Serrin, “Entire solutions of completely coercive quasilinear elliptic equations”, J. Differ. Equ., 250:12 (2011), 4367–4408 | DOI | MR | Zbl
[7] A. Farina, J. Serrin, “Entire solutions of completely coercive quasilinear elliptic equations II”, J. Differ. Equ., 250:12 (2011), 4409–4436 | DOI | MR | Zbl
[8] R. Filippucci, P. Pucci, M. Rigoli, “Nonlinear weighted p-Laplacian elliptic inequalities with gradient terms”, Commun. Contemp. Math., 12:3 (2010), 501–535 | DOI | MR | Zbl
[9] E. Galakhov, O. Salieva, “On blow-up of solutions to differential inequalities with singularities on unbounded sets”, J. Math. Anal. Appl., 408:1 (2013), 102–113 | DOI | MR | Zbl
[10] E. Galakhov, O. Salieva, “Nonexistence of solutions of some inequalities with gradient non-linearities and fractional Laplacian”, Proc. Int. Conf. Equadiff 2017, Spektrum STU Publishing, Bratislava, 2017, 157–162 | MR
[11] E. Galakhov, O. Salieva, “Uniqueness of the trivial solution of some inequalities with fractional Laplacian”, Electron. J. Qual. Theory Differ. Equ., 2019:1 (2019), 1–8 | DOI | MR | Zbl
[12] X. Li, F. Li, “Nonexistence of solutions for singular quasilinear differential inequalities with a gradient nonlinearity”, Nonlinear Anal., 75:2 (2012), 2812–2822 | MR | Zbl