Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_4_a2, author = {V. A. Krasnov}, title = {Volumes of polyhedra in {non-Euclidean} spaces of constant curvature}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {558--679}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a2/} }
TY - JOUR AU - V. A. Krasnov TI - Volumes of polyhedra in non-Euclidean spaces of constant curvature JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 558 EP - 679 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a2/ LA - ru ID - CMFD_2020_66_4_a2 ER -
V. A. Krasnov. Volumes of polyhedra in non-Euclidean spaces of constant curvature. Contemporary Mathematics. Fundamental Directions, Algebra, Geometry, and Topology, Tome 66 (2020) no. 4, pp. 558-679. http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a2/
[1] N. V. Abrosimov, “To the solution of Seidel's problem on the volumes of hyperbolic tetrahedra”, Siberian Electron. Math. Bull., 6 (2009), 211–218 (in Russian) | MR | Zbl
[2] N. V. Abrosimov, “Seidel's problem on the volume of a non-Euclidean tetrahedron”, Rep. Russ. Acad. Sci., 435:1 (2010), 7–10 (in Russian) | Zbl
[3] N. V. Abrosimov, G. A. Baygonakova, “Hyperbolic octahedron with $\mathrm{mmm}$-symmetry”, Siberian Math. J., 10 (2013), 123–140 (in Russian) | Zbl
[4] N. V. Abrosimov, B. Vuong Huu, “The volume of a hyperbolic tetrahedron with symmetry group $S_4$”, Proc. Inst. Math. Mech. Ural Branch Russ. Acad. Sci., 23, no. 4, 2017, 2–17 (in Russian)
[5] N. V. Abrosimov, M. Godoy-Molina, A. D. Mednykh, “On the volume of spherical octahedron with symmetries”, Contemp. Math. Appl., 60, 2008, 3–12 (in Russian)
[6] N. V. Abrosimov, E. S. Kudina, A. D. Mednykh, “On the volume of a hyperbolic octahedron with $\bar{3}$-symmetry”, Proc. Math. Inst. Russ. Acad. Sci., 288, 2015, 7–15 (in Russian) | Zbl
[7] N. V. Abrosimov, E. S. Kudina, A. D. Mednykh, “Volume of a hyperbolic hexahedron with $\bar{3}$-symmetry”, Siberian Electron. Math. Bull., 13 (2016), 1150–1158 (in Russian) | MR | Zbl
[8] E. M. Andreev, “On convex polyhedra in Lobachevsky spaces”, Math. Digest, 81 (1970), 445–478 (in Russian) | Zbl
[9] E. M. Andreev, “On convex polyhedra of finite volume in Lobachevsky space”, Math. Digest, 83 (1970), 256–260 (in Russian) | Zbl
[10] D. V. Alekseevskiy, E. B. Vinberg, A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Totals Sci. Tech. Contemp. Probl. Math. Fundam. Directions, 29, 1988, 1–146 (in Russian)
[11] G. A. Baygonakova, M. Godoy-Molina, A. D. Mednykh, “On geometric properties of hyperbolic octahedron with $\mathrm{mmm}$-symmetry”, Bull. Kemerovo State Univ., 47:3/1 (2011), 13–18 (in Russian)
[12] V. M. Bukhshtaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Pak, “Cohomological rigidity of manifolds defined by 3-dimensional polyhedra”, Progr. Math. Sci., 434:2 (2017), 3–66 (in Russian)
[13] V. M. Bukhshtaber, T. E. Panov, Toric Actions in Topology and Combinatorics, MTsNMO, M., 2004 (in Russian) | MR
[14] A. Yu. Vesnin, “Volumes of 3-dimensional hyperbolic Labelle's manifolds”, Math. Notes, 64:1 (1998), 17–23 (in Russian) | MR | Zbl
[15] A. Yu. Vesnin, “Rectangular polyhedra and three-dimensional hyperbolic manifolds”, Progr. Math. Sci., 434:2 (2017), 147–190 (in Russian)
[16] E. B. Vinberg, “Volumes of non-Euclidean polyhedra”, Progr. Math. Sci., 290:2 (1993), 17–46 (in Russian) | MR | Zbl
[17] A. A. Gayfullin, “Embedded flexible spherical cross-polytopes with variable volumes”, Proc. Math. Inst. Russ. Acad. Sci., 288, 2015, 67–94 (in Russian) | Zbl
[18] A. A. Gayfullin, “Analytical continuation of the volume and the bellows hypothesis in Lobachevsky spaces”, Math. Digest, 206:11 (2015), 61–112 (in Russian) | MR | Zbl
[19] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, “Some applications of the octahedron volume formula”, Math. Notes, 76:1 (2004), 27–43 (in Russian) | MR | Zbl
[20] D. A. Derevnin, A. D. Mednykh, “Volume of the Lambert spherical cube”, Math. Notes, 86:2 (2009), 190–201 (in Russian) | MR | Zbl
[21] D. A. Derevnin, A. D. Mednykh, M. G. Pashkevich, “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Siberian Math. J., 45:5 (2004), 1022–1031 (in Russian) | MR | Zbl
[22] A. A. Kolpakov, A. D. Mednykh, M. G. Pashkevich, “Volume formula for a $\mathbb{Z}_2$-symmetric tetrahedron”, Siberian Math. J., 52:3 (2011), 577–594 (in Russian)
[23] V. A. Krasnov, “On integral expressions for volumes of hyperbolic tetrahedra”, Contemp. Math. Fundam. Directions, 49, 2013, 89–98 (in Russian)
[24] V. A. Krasnov, “On the volume of hyperbolic octahedra with nontrivial symmetry”, Contemp. Math. Fundam. Directions, 51, 2013, 74–86 (in Russian)
[25] V. A. Krasnov, “Non-Euclidean octahedra with $\mathrm{mm2}$-symmetry”, Math. Notes, 99:1 (2016), 145–148 (in Russian) | MR
[26] V. A. Krasnov, “On volumes of hyperbolic simplexes”, Math. Notes, 106:6 (2019), 866–880 (in Russian) | Zbl
[27] V. A. Krasnov, “On application of the modern proof of the Sforza formula to computation of the volumes of hyperbolic tetrahedra of a special form”, Contemp. Math. Fundam. Directions, 65, no. 4, 2019, 623–634 (in Russian) | MR
[28] N. I. Lobachevskiy, “Imaginary Geometry”, Complete Set of Works, v. 3, M.–Leningrad, 1949 (in Russian)
[29] F. V. Petrov, “Inscribed quadrilaterals and trapezoids in absolute geometry”, Mathematical Education, 13, MTsNMO, M., 2009, 149–154 (in Russian)
[30] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series. Elementary Functions, Nauka, M., 1981 (in Russian) | MR
[31] I. Kh. Sabitov, “Volume of a polyhedron as a function of its metrics”, Fundam. Appl. Math., 2:4 (1996), 1235–1246 (in Russian) | MR | Zbl
[32] I. Kh. Sabitov, “Volumes of polihedra”, Mathematical Education, 21, MTsNMO, M., 2009 (in Russian)
[33] I. Kh. Sabitov, “On one method for computation of volumes of bodies”, Siberian Electron. Math. Bull., 2013, no. 10, 615–626 (in Russian) | MR | Zbl
[34] I. Kh. Sabitov, “Hyperbolic tetrahedron: computing volume with application to the proof of the Schläfli formula”, Model. Anal. Inform. Syst., 20:6 (2013), 149–161 (in Russian)
[35] D. Yu. Sokolova, “On the area of a trapezoid on the Lobachevsky plane”, Siberian Electron. Math. Bull., 9 (2012), 256–260 (in Russian) | MR | Zbl
[36] Abrosimov N. V., Mednykh A. D., “Volumes of polytopes in spaces of constant curvature”, Fields Inst. Commun., 70:1 (2014), 1–26 | MR | Zbl
[37] Alexandrov V. A., “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beitr. Algebra Geom., 38:1 (1997), 11–18 | MR | Zbl
[38] Bilinski S., “Zur Begründung der elementaren Inhaltslehre in der hyperbolischen Ebene”, Math. Ann., 180 (1969), 256–268 | DOI | MR | Zbl
[39] Bolyai J., “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987
[40] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl
[41] Connely R., Sabitov I., Walz A., “The bellows conjecture”, Contrib. Algebra Geom., 38:1 (1997), 1–10 | MR
[42] Coxeter H. S. M., “The functions of Schläfli and Lobatschefsky”, Quarterly J. Math. Oxford, 6 (1935), 13–29 | DOI
[43] Coxeter H. S. M., Greitzer S. L., Geometry Revisited, The Mathematical Association of America, Washington, 1967 | MR | Zbl
[44] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Russ. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[45] Diaz R., “A characterization of Gram matrices of polytopes”, Discrete Comput. Geom., 21:4 (1999), 581–601 | DOI | MR | Zbl
[46] Dickinson W., Salmassi M., “The right right triangle on the sphere”, College Math. J., 39:1 (2008), 24–33 | DOI | MR | Zbl
[47] Gaifullin A. A., “Sabitov polynomials for polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611 | DOI | MR | Zbl
[48] Gaifullin A. A., “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220 | DOI | MR | Zbl
[49] Gaifullin A. A., “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Mosc. Math. J., 17:2 (2017), 269–290 | DOI | MR | Zbl
[50] Guo R., Sönmez N., “Cyclic polygons in classical geometry”, C. R. Acad. Bulgare Sci., 64:2 (2011), 185–194 | MR | Zbl
[51] Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285:4 (1989), 541–569 | DOI | MR | Zbl
[52] Kneser H., “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340
[53] MClelland J. W., Preston T., A Treatise on Spherical Trigonometry with Application to Spherical Geometry and Numerous Examples, v. II, Macmillian and Co, London, 1886
[54] A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Sib. Elektron. Mat. Izv., 9 (2012), 247–255 | MR | Zbl
[55] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc., 6:1 (1982), 307–332 | DOI | MR
[56] Mohanty Y., “The Regge symmetry is a scissors congruence in hyperbolic space”, Algebr. Geom. Topol., 3 (2003), 1–31 | DOI | MR | Zbl
[57] Murakami J., “The volume formulas for a spherical tetrahedron”, Acta Math. Vietnam, 33:3 (2018), 219–253 | MR
[58] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1-2 (2005), 153–163 | DOI | MR | Zbl
[59] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Commun. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl
[60] Murakami H., Yokota Y., Volume Conjecture for Knots, Springer, Singapore, 2018 | MR | Zbl
[61] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI | MR
[62] Sforza G., “Spazi metrico-proiettivi”, Ric. Esten. Different. Ser., 8:3 (1906), 3–66
[63] Thurston W., “Three-dimensional manifold, Kleinian groups and hyperbolic geometry”, Bull. Am. Math. Soc. (N.S.), 6:3 (1982), 357–381 | DOI | MR
[64] Ushijima A., “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl
[65] Valentine J. E., “An analogue of Ptolemy's theorem and its converse in hyperbolic geometry”, Pacific J. Math., 34 (1970), 817–825 | DOI | MR | Zbl
[66] Wimmer L., “Cyclic polygons in non-Euclidean geometry”, Elem. Math., 66 (2011), 74–82 | DOI | MR | Zbl