Coding knots by $T$-graphs
Contemporary Mathematics. Fundamental Directions, Algebra, Geometry, and Topology, Tome 66 (2020) no. 4, pp. 531-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, knots are considered as smooth embeddings of a circle into $\mathbb R^3$ defined by their flat diagrams. We propose a new method of coding knots by $T$-graphs describing the torsion structure on a flat diagram. For this method of coding, we introduce conceptions of a cycle and a block and describe transformations of $T$-graphs under the first and the third Reidemeister moves applied to the flat diagram of a knot.
@article{CMFD_2020_66_4_a0,
     author = {O. N. Biryukov},
     title = {Coding knots by $T$-graphs},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {531--543},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a0/}
}
TY  - JOUR
AU  - O. N. Biryukov
TI  - Coding knots by $T$-graphs
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2020
SP  - 531
EP  - 543
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a0/
LA  - ru
ID  - CMFD_2020_66_4_a0
ER  - 
%0 Journal Article
%A O. N. Biryukov
%T Coding knots by $T$-graphs
%J Contemporary Mathematics. Fundamental Directions
%D 2020
%P 531-543
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a0/
%G ru
%F CMFD_2020_66_4_a0
O. N. Biryukov. Coding knots by $T$-graphs. Contemporary Mathematics. Fundamental Directions, Algebra, Geometry, and Topology, Tome 66 (2020) no. 4, pp. 531-543. http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a0/

[1] O. N. Biryukov, “Ridgeless knots”, Bull. State Soc.-Hum. Univ., 2019, no. 3 (35), 18–23 (in Russian)

[2] S. V. Duzhin, S. V. Chmutov, “Knots and their invariants”, Mathematical Enlightenment, 3, MTsNMO, M., 1999, 59–93 (in Russian)

[3] I. A. Dynnikov, “Recognition algorithms in knot theory”, Progr. Math. Sci., 58:6 (2003), 45–92 (in Russian) | MR | Zbl

[4] R. Crowell, R. Fox, Introduction to Knot Theory, Mir, M., 1967 (in Russian) | MR

[5] V. O. Manturov, Knot Theory, NITs Reg. Khaot. Dinam., M.–Izhevsk, 2005 (in Russian)

[6] A. B. Sosinskiy, Nodes. Timeline of One Mathematical Theory, MTsNMO, M., 2005 (in Russian)

[7] Hass J., “Algorithms for recognizing knots and 3-manifolds”, Chaos Solitons Fractals, 9:4-5 (1998), 569–581 | DOI | MR | Zbl