Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_4_a0, author = {O. N. Biryukov}, title = {Coding knots by $T$-graphs}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {531--543}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a0/} }
O. N. Biryukov. Coding knots by $T$-graphs. Contemporary Mathematics. Fundamental Directions, Algebra, Geometry, and Topology, Tome 66 (2020) no. 4, pp. 531-543. http://geodesic.mathdoc.fr/item/CMFD_2020_66_4_a0/
[1] O. N. Biryukov, “Ridgeless knots”, Bull. State Soc.-Hum. Univ., 2019, no. 3 (35), 18–23 (in Russian)
[2] S. V. Duzhin, S. V. Chmutov, “Knots and their invariants”, Mathematical Enlightenment, 3, MTsNMO, M., 1999, 59–93 (in Russian)
[3] I. A. Dynnikov, “Recognition algorithms in knot theory”, Progr. Math. Sci., 58:6 (2003), 45–92 (in Russian) | MR | Zbl
[4] R. Crowell, R. Fox, Introduction to Knot Theory, Mir, M., 1967 (in Russian) | MR
[5] V. O. Manturov, Knot Theory, NITs Reg. Khaot. Dinam., M.–Izhevsk, 2005 (in Russian)
[6] A. B. Sosinskiy, Nodes. Timeline of One Mathematical Theory, MTsNMO, M., 2005 (in Russian)
[7] Hass J., “Algorithms for recognizing knots and 3-manifolds”, Chaos Solitons Fractals, 9:4-5 (1998), 569–581 | DOI | MR | Zbl