Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_2_a8, author = {A. R. Yakubova}, title = {On spectral and evolutional problems generated by a sesquilinear form}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {335--371}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a8/} }
TY - JOUR AU - A. R. Yakubova TI - On spectral and evolutional problems generated by a sesquilinear form JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 335 EP - 371 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a8/ LA - ru ID - CMFD_2020_66_2_a8 ER -
A. R. Yakubova. On spectral and evolutional problems generated by a sesquilinear form. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 335-371. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a8/
[1] M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems is Domains with Smooth and Lipschitz Boundary, MTsMNO, M., 2013 (in Russian)
[2] T. Ya. Azizov, N. D. Kopachevsky, Abstract Green Formula and Its Applications: Special Course, FLP O. A. Bondarenko, Simferopol', 2011 (in Russian)
[3] V. I. Voytitsky, N. D. Kopachevsky, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Contemp. Math. Fundam. Directions, 34, 2009, 5–44 (in Russian)
[4] I. L. Vulis, M. Z. Solomyak, “Spectral asymptotic of degenerating Steklov problem”, Bull. LGU, 19 (1973), 148–150 (in Russian)
[5] V. I. Gorbachuk, “Dissipative boundary-value problems for elliptic differential equation”, Functional and Numerical Methods of Mathematical Physics, Naukova dumka, Kiev, 1998, 60–63 (in Russian)
[6] I. Ts. Gokhberg, M. G. Kreyn, Introduction to the Theory of Linear Non-self-adjoint Operators in Hilbert Space, Nauka, M., 1965 (in Russian)
[7] N. D. Kopachevsky, “Abstract Green formula and the Stocks Problem”, Bull. Higher Edu. Inst. North-Caucasian reg. Nat. Sci. Math. Mech. Contin. Media, 2004, 137–141 (in Russian)
[8] N. D. Kopachevsky, “On abstract Green formula for a triple of Hilbert spaces and its applications to the Stokes problem”, Tavricheskiy Bull. Inform. Math., 2 (2004), 52–80 (in Russian)
[9] N. D. Kopachevsky, Operator Methods of Mathematical Physics, Special Course of Lectures, OOO «FORMA», Simferopol', 2008 (in Russian)
[10] N. D. Kopachevsky, Spectral Theory of Operator Pencils: Special Course of Lectures, OOO «FORMA», Simferopol', 2009 (in Russian)
[11] N. D. Kopachevsky, “On abstract Green formula for mixed boundary-value problems and its applications”, Spectral Evolution Probl., 21:1 (2011), 2–39 (in Russian)
[12] N. D. Kopachevsky, Integrodifferential Equations in Hilbert Space, FLP O. A. Bondarenko, Simferopol', 2012 (in Russian)
[13] N. D. Kopachevsky, “On abstract Green formula for triples of Hilbert spaces and sesquilinear forms”, Contemp. Math. Fundam. Directions, 57, 2015, 71–107 (in Russian)
[14] N. D. Kopachevsky, Abstract Green Formula and Some Its Applications, OOO «FORMA», Simferopol', 2016 (in Russian)
[15] N. D. Kopachevsky, S. G. Kreyn, “Abstract Green formula for a triple of Hilbert spaces and abstract boundary-value and spectral problems”, Ukr. Math. Bull., 1:1 (2004), 69–97 (in Russian)
[16] N. D. Kopachevsky, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolutional and Spectral Problems, Nauka, M., 1989 (in Russian)
[17] N. D. Kopachevsky, K. A. Radomirskaya, “Abstract mixed boundary-value and spectral conjugation problems and their applications”, Contemp. Math. Fundam. Directions, 61, 2016, 67–102 (in Russian)
[18] N. D. Kopachevsky, A. R. Yakubova, “On boundary-value, spectral, and initial-boundary problems generated by sesquilinear forms”, Proc. XXIV Int. Conf. Math. Economics. Education; IX Int. Symp. Fourier Ser. Appl.; Int. Conf. Stoch. Methods, Fond nauki i obrazovaniya, Rostov-na-Donu, 2016, 57–63 (in Russian)
[19] N. D. Kopachevsky, A. R. Yakubova, “On some spectral and initial-boundary problems generated by sesquilinear forms”, Abstr. Int. Conf. XXVII Crimean Autumnal Math. School-Symp. Spectral Evol. Probl. (Batiliman (Laspi), Russia, 17–29 Sent. 2016), OOO «FORMA», Simferopol', 2016, 84–85 (in Russian)
[20] N. D. Kopachevsky, A. R. Yakubova, “On some problems generated by a sesquilinear form”, Contemp. Math. Fundam. Directions, 63, no. 2, 2017, 278–315 (in Russian)
[21] S. G. Kreyn, “On oscillations of a viscous fluid in a vessel”, Rep. Acad. Sci. USSR, 159:2 (1964), 262–265 (in Russian)
[22] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, M., 1967 (in Russian)
[23] S. G. Kreyn, G. I. Laptev, “To the problem on motion of a viscous fluid in an open vessel”, Funct. Anal. Appl., 1:2 (1968), 40–50 (in Russian)
[24] O. A. Ladyzhenskaya, Mathematical Problems in Dynamics of a Viscous Incompressible Fluid, Nauka, M., 1970 (in Russian)
[25] J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Russian translation, Mir, M., 1971
[26] A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian)
[27] A. S. Markus, V. I. Matsaev, “Comparability theorems for spectra of linear operators and spectral asymptotics”, Proc. Moscow Math. Soc., 45, 1982, 133–1381 (in Russian)
[28] A. S. Markus, V. I. Matsaev, “Comparability theorems for spectra of linear operators and spectral asymptotics for Keldysh pencils”, Math. Digest, 123:3 (1984), 391–406 (in Russian)
[29] A. S. Markus, V. I. Matsaev, “On basis property of some part of eigenvectors and adjoined vectors of a self-adjoint operator pencil”, Math. Digest, 133:3 (1987), 293–313 (in Russian)
[30] S. G. Mikhlin, The Problem of Minimum of a Quadratic Functional, Gostekhizdat, M.–L., 1952 (in Russian)
[31] S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, M., 1970 (in Russian)
[32] J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems, Russian translation, Mir, M., 1977
[33] L. S. Pontryagin, “Hermitian operators in a space with indefinite metric”, Bull. Acad. Sci. USSR. Ser. Math., 8:6 (1944), 243–280 (in Russian)
[34] K. A. Radomirskaya, “Spectral and initial-boundary conjugation problems”, Contemp. Math. Fundam. Directions, 63, no. 2, 2017, 316–339 (in Russian)
[35] P. A. Starkov, “Operator approach to conjugation problems”, Sci. Notes Vernadskii Tavria Nats. Univ. Ser. Math. Mech. Inform. Cybern., 15:1 (2002), 58–62 (in Russian)
[36] P. A. Starkov, “Case of general position for operator pencil arising in research of conjugation problems”, Sci. Notes Vernadskii Tavria Nats. Univ. Ser. Math. Mech. Inform. Cybern., 15:2 (2002), 82–88 (in Russian)
[37] Agranovich M. S., “Remarks on potential and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155
[38] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin–Toronto, 1999
[39] Chueshov I., Eller M., Lasieska I., “Finite dimensionally of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Commun. Part. Differ. Equ., 29:1 (2004), 1–12
[40] Gagliardo E., “Caratterizazioni delle trace sullo frontiera relative ad alcune classi de funzioni $n$ variabili”, Rend. Semin. Mat. Univ. Padova., 27 (1957), 284–305
[41] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000