Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 314-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homogenization of a second-order elliptic differential operator $A_\varepsilon=-\mathrm{div}\, a(x/\varepsilon)\nabla$ acting in an $\varepsilon$-periodically perforated space, where $\varepsilon$ is a small parameter. Coefficients of the operator $A_\varepsilon$ are measurable $\varepsilon$-periodic functions. The simplest case where coefficients of the operator are constant is also interesting for us. We find an approximation for the resolvent $(A_\varepsilon+1)^{-1}$ with remainder term of order $\varepsilon^2$ as $\varepsilon\to 0$ in operator $L^2$-norm on the perforated space. This approximation turns to be the sum of the resolvent $(A_0+1)^{-1}$ of the homogenized operator $A_0=-\mathrm{div}\, a^0\nabla,$ $a^0>0$ being a constant matrix, and some correcting operator $\varepsilon \mathcal{C}_\varepsilon.$ The proof of this result is given by the modified method of the first approximation with the usage of the Steklov smoothing operator.
@article{CMFD_2020_66_2_a7,
     author = {S. E. Pastukhova},
     title = {Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {314--334},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2020
SP  - 314
EP  - 334
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/
LA  - ru
ID  - CMFD_2020_66_2_a7
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space
%J Contemporary Mathematics. Fundamental Directions
%D 2020
%P 314-334
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/
%G ru
%F CMFD_2020_66_2_a7
S. E. Pastukhova. Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 314-334. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/

[1] N. S. Bakhvalov, G. P. Panasenko, Homogenization of Processes in Periodic Media, Nauka, M., 1984 (in Russian)

[2] A. Yu. Belyaev, Homogenization in Filtration Problems, Nauka, M., 2004 (in Russian)

[3] M. Sh. Birman, T. A. Suslina, “Periodic second-order differential operators: threshold homogenization properties”, Algebra Anal., 15:5 (2003), 1–108 (in Russian)

[4] M. Sh. Birman, T. A. Suslina, “Homogenization of periodic elliptic differential operators with a corrector”, Algebra Anal., 17:6 (2005), 1–104 (in Russian)

[5] V. V. Zhikov, “On operator estimates in the homogenization theory”, Rep. Russ. Acad. Sci., 403:3 (2005), 305–308 (in Russian)

[6] V. V. Zhikov, “On the spectral method in homogenization theory”, Proc. Math. Inst. Russ. Acad. Sci., 250 (2005), 95–104 (in Russian)

[7] V. V. Zhikov, “On some estimates in the homogenization theory”, Rep. Russ. Acad. Sci., 406:5 (2006), 597–601 (in Russian)

[8] V. V. Zhikov, S. M. Kozlov, O. A. Oleynik, Homogenization of Differential Operators, Nauka, M., 1993 (in Russian)

[9] V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerating elliptic equations”, Siberian Math. J., 49:1 (2008), 101–124 (in Russian)

[10] V. V. Zhikov, S. E. Pastukhova, S. V. Tikhomirova, “On homogenization of degenerating elliptic equations”, Rep. Russ. Acad. Sci., 410:5 (2006), 587–591 (in Russian)

[11] V. V. Zhikov, S. E. Pastukhova, “On operator estimates in homogenization theory”, Progr. Math. Sci., 71:3 (2016), 3–98 (in Russian)

[12] O. A. Oleynik, G. A. Iosif'yan, A. S. Shamaev, Mathematical Fundamentals of Strongly Nonhomogeneous Elastic Media, MGU, M., 1990 (in Russian)

[13] S. E. Pastukhova, “On some estimates from homogenization of problems of elasticity theory”, Rep. Russ. Acad. Sci., 406:5 (2006), 604–608 (in Russian)

[14] S. E. Pastukhova, R. N. Tikhomirov, “Operator estimates in reiterated and locally periodic homogenization”, Rep. Russ. Acad. Sci., 415:3 (2007), 304–305 (in Russian)

[15] S. E. Pastukhova, S. V. Tikhomirova, “Elliptic equation with nonsymmetric matrix: homogenization of «variational solutions»”, Math. Notes, 81:4 (2007), 631–635 (in Russian)

[16] N. N. Senik, “On homogenization of non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 92–96 (in Russian)

[17] Acerbi E., Chiado Piat V., Dal Maso G., Percivale D., “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496

[18] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978

[19] Cardone G., Pastukhova S. E., Zhikov V. V., “Some estimates for nonlinear homogenization”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 101–110

[20] Pastukhova S. E., “Operator estimates in nonlinear problems of reiterated homogenization”, Proc. Steklov Inst. Math., 261 (2008), 214–228

[21] Pastukhova S. E., “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66 (2010), 207–228

[22] Pastukhova S. E., “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306

[23] Pastukhova S. E., “Approximations of the resolvent for a non-self-adjoint diffusion operator with rapidly oscillating coefficients”, Math. Notes, 94 (2013), 127–145

[24] Pastukhova S. E., “Approximation of the exponential of a diffusion operator with multiscale coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–198

[25] Pastukhova S. E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95 (2016), 1449–1466

[26] Pastukhova S. E., “Operator error estimates for homogenization of fourth order elliptic equations”, St. Petersburg Math. J., 28 (2017), 273–289

[27] Pastukhova S. E., “Operator estimates in homogenization of elliptic systems of equations”, J. Math. Sci. (N.Y.), 226:4 (2017), 445–461

[28] Pastukhova S. E., “$L^2$-estimates for homogenization of elliptic operators”, J. Math. Sci. (N.Y.), 244:4 (2020), 671–685

[29] Pastukhova S. E., “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 814–834

[30] Pastukhova S. E., On resolvent approximations of elliptic differential operators with periodic coefficients, 2020, arXiv: 2001.01701 [math.AP]

[31] Pastukhova S. E., Tikhomirov R. N., “Operator-type estimates in homogenization of elliptic equations with lower order terms”, St. Petersburg. Math. J., 29 (2018), 841–861

[32] Senik N. N., “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49 (2017), 874–898

[33] Senik N. N., Homogenization for non-self-adjoint locally periodic elliptic operators, 2017, arXiv: 1703.02023v2 [math.AP]

[34] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524

[35] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:4 (2006), 224–237

[36] Zhikov V. V., Pastukhova S. E., “Homogenization estimates of operator type for an elliptic equation with quasiperiodic coefficients”, Russ. J. Math. Phys., 22:4 (2015), 264–278