Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_2_a7, author = {S. E. Pastukhova}, title = {Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {314--334}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/} }
TY - JOUR AU - S. E. Pastukhova TI - Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 314 EP - 334 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/ LA - ru ID - CMFD_2020_66_2_a7 ER -
%0 Journal Article %A S. E. Pastukhova %T Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space %J Contemporary Mathematics. Fundamental Directions %D 2020 %P 314-334 %V 66 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/ %G ru %F CMFD_2020_66_2_a7
S. E. Pastukhova. Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 314-334. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a7/
[1] N. S. Bakhvalov, G. P. Panasenko, Homogenization of Processes in Periodic Media, Nauka, M., 1984 (in Russian)
[2] A. Yu. Belyaev, Homogenization in Filtration Problems, Nauka, M., 2004 (in Russian)
[3] M. Sh. Birman, T. A. Suslina, “Periodic second-order differential operators: threshold homogenization properties”, Algebra Anal., 15:5 (2003), 1–108 (in Russian)
[4] M. Sh. Birman, T. A. Suslina, “Homogenization of periodic elliptic differential operators with a corrector”, Algebra Anal., 17:6 (2005), 1–104 (in Russian)
[5] V. V. Zhikov, “On operator estimates in the homogenization theory”, Rep. Russ. Acad. Sci., 403:3 (2005), 305–308 (in Russian)
[6] V. V. Zhikov, “On the spectral method in homogenization theory”, Proc. Math. Inst. Russ. Acad. Sci., 250 (2005), 95–104 (in Russian)
[7] V. V. Zhikov, “On some estimates in the homogenization theory”, Rep. Russ. Acad. Sci., 406:5 (2006), 597–601 (in Russian)
[8] V. V. Zhikov, S. M. Kozlov, O. A. Oleynik, Homogenization of Differential Operators, Nauka, M., 1993 (in Russian)
[9] V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerating elliptic equations”, Siberian Math. J., 49:1 (2008), 101–124 (in Russian)
[10] V. V. Zhikov, S. E. Pastukhova, S. V. Tikhomirova, “On homogenization of degenerating elliptic equations”, Rep. Russ. Acad. Sci., 410:5 (2006), 587–591 (in Russian)
[11] V. V. Zhikov, S. E. Pastukhova, “On operator estimates in homogenization theory”, Progr. Math. Sci., 71:3 (2016), 3–98 (in Russian)
[12] O. A. Oleynik, G. A. Iosif'yan, A. S. Shamaev, Mathematical Fundamentals of Strongly Nonhomogeneous Elastic Media, MGU, M., 1990 (in Russian)
[13] S. E. Pastukhova, “On some estimates from homogenization of problems of elasticity theory”, Rep. Russ. Acad. Sci., 406:5 (2006), 604–608 (in Russian)
[14] S. E. Pastukhova, R. N. Tikhomirov, “Operator estimates in reiterated and locally periodic homogenization”, Rep. Russ. Acad. Sci., 415:3 (2007), 304–305 (in Russian)
[15] S. E. Pastukhova, S. V. Tikhomirova, “Elliptic equation with nonsymmetric matrix: homogenization of «variational solutions»”, Math. Notes, 81:4 (2007), 631–635 (in Russian)
[16] N. N. Senik, “On homogenization of non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 92–96 (in Russian)
[17] Acerbi E., Chiado Piat V., Dal Maso G., Percivale D., “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496
[18] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978
[19] Cardone G., Pastukhova S. E., Zhikov V. V., “Some estimates for nonlinear homogenization”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 101–110
[20] Pastukhova S. E., “Operator estimates in nonlinear problems of reiterated homogenization”, Proc. Steklov Inst. Math., 261 (2008), 214–228
[21] Pastukhova S. E., “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66 (2010), 207–228
[22] Pastukhova S. E., “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306
[23] Pastukhova S. E., “Approximations of the resolvent for a non-self-adjoint diffusion operator with rapidly oscillating coefficients”, Math. Notes, 94 (2013), 127–145
[24] Pastukhova S. E., “Approximation of the exponential of a diffusion operator with multiscale coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–198
[25] Pastukhova S. E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95 (2016), 1449–1466
[26] Pastukhova S. E., “Operator error estimates for homogenization of fourth order elliptic equations”, St. Petersburg Math. J., 28 (2017), 273–289
[27] Pastukhova S. E., “Operator estimates in homogenization of elliptic systems of equations”, J. Math. Sci. (N.Y.), 226:4 (2017), 445–461
[28] Pastukhova S. E., “$L^2$-estimates for homogenization of elliptic operators”, J. Math. Sci. (N.Y.), 244:4 (2020), 671–685
[29] Pastukhova S. E., “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 814–834
[30] Pastukhova S. E., On resolvent approximations of elliptic differential operators with periodic coefficients, 2020, arXiv: 2001.01701 [math.AP]
[31] Pastukhova S. E., Tikhomirov R. N., “Operator-type estimates in homogenization of elliptic equations with lower order terms”, St. Petersburg. Math. J., 29 (2018), 841–861
[32] Senik N. N., “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49 (2017), 874–898
[33] Senik N. N., Homogenization for non-self-adjoint locally periodic elliptic operators, 2017, arXiv: 1703.02023v2 [math.AP]
[34] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524
[35] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:4 (2006), 224–237
[36] Zhikov V. V., Pastukhova S. E., “Homogenization estimates of operator type for an elliptic equation with quasiperiodic coefficients”, Russ. J. Math. Phys., 22:4 (2015), 264–278