Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_2_a6, author = {E. Yu. Panov}, title = {On the theory of entropy solutions of nonlinear degenerate parabolic equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {292--313}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a6/} }
TY - JOUR AU - E. Yu. Panov TI - On the theory of entropy solutions of nonlinear degenerate parabolic equations JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 292 EP - 313 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a6/ LA - ru ID - CMFD_2020_66_2_a6 ER -
E. Yu. Panov. On the theory of entropy solutions of nonlinear degenerate parabolic equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 292-313. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a6/
[1] S. N. Kruzhkov, “Quasilinear first-order equations with many independent variables”, Math. Digest, 81:2 (1970), 228–255 (in Russian)
[2] S. N. Kruzhkov, E. Yu. Panov, “Conservative quasilinear first-order laws with infinite domain of dependence on initial data”, Rep. Acad. Sci. USSR, 314:1 (1990), 79–84 (in Russian)
[3] E. Yu. Panov, “To the theory of generalized entropic sub- and super-solutions of the Cauchy problem for first-order quasilinear equation”, Differ. Equ., 37:2 (2001), 252–259 (in Russian)
[4] E. Yu. Panov, “On greatest and least generalized entropic solutions of the Cauchy problem for quasilinear first-order equation”, Math. Digest, 193:5 (2002), 95–112 (in Russian)
[5] E. Yu. Panov, “To the theory of generalized entropic solutions of the Cauchy problem for first-order quasilinear equation in the class of locally summable functions”, Bull. Russ. Acad. Sci., 66:6 (2002), 91–136 (in Russian)
[6] Andreianov B. P., Bénilan Ph., Kruzhkov S. N., “$L^1$-theory of scalar conservation law with continuous flux function”, J. Funct. Anal., 171:1 (2000), 15–33
[7] Andreianov B. P., Igbida N., “On uniqueness techniques for degenerate convection–diffusion problems”, Int. J. Dyn. Syst. Differ. Equ., 4:1-2 (2012), 3–34
[8] Andreianov B. P., Maliki M., “A note on uniqueness of entropy solutions to degenerate parabolic equations in $\mathbb{R}^N$”, NoDEA: Nonlinear Differ. Equ. Appl., 17:1 (2010), 109–118
[9] Bénilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux function”, NoDEA: Nonlinear Differ. Equ. Appl., 3 (1996), 395–419
[10] Carrillo J., “Entropy solutions for nonlinear degenerate problems”, Arch. Ration. Mech. Anal., 147 (1999), 269–361
[11] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 40 (1994), 31–54
[12] Maliki M., Touré H., “Uniqueness of entropy solutions for nonlinear degenerate parabolic problem”, J. Evol. Equ., 3:4 (2003), 603–622
[13] Panov E. Yu., “On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property”, J. Hyperbolic Differ. Equ., 13 (2016), 633–659
[14] Panov E. Yu., “To the theory of entropy sub-solutions of degenerate nonlinear parabolic equations”, Math. Methods Appl. Sci., 2020 | DOI