Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_2_a5, author = {D. A. Neverova}, title = {Smoothness of generalized solutions of the {Neumann} problem for a strongly elliptic differential-difference equation on the boundary of adjacent subdomains}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {272--291}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a5/} }
TY - JOUR AU - D. A. Neverova TI - Smoothness of generalized solutions of the Neumann problem for a strongly elliptic differential-difference equation on the boundary of adjacent subdomains JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 272 EP - 291 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a5/ LA - ru ID - CMFD_2020_66_2_a5 ER -
%0 Journal Article %A D. A. Neverova %T Smoothness of generalized solutions of the Neumann problem for a strongly elliptic differential-difference equation on the boundary of adjacent subdomains %J Contemporary Mathematics. Fundamental Directions %D 2020 %P 272-291 %V 66 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a5/ %G ru %F CMFD_2020_66_2_a5
D. A. Neverova. Smoothness of generalized solutions of the Neumann problem for a strongly elliptic differential-difference equation on the boundary of adjacent subdomains. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 272-291. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a5/