Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_2_a4, author = {M. A. Muratov and B.-Z. A. Rubshtein}, title = {Symmetric spaces of measurable functions: old and new advances}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {221--271}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a4/} }
TY - JOUR AU - M. A. Muratov AU - B.-Z. A. Rubshtein TI - Symmetric spaces of measurable functions: old and new advances JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 221 EP - 271 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a4/ LA - ru ID - CMFD_2020_66_2_a4 ER -
M. A. Muratov; B.-Z. A. Rubshtein. Symmetric spaces of measurable functions: old and new advances. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 221-271. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a4/
[1] M. Sh. Braverman, A. A. Mekler, “On the Hardy–Littlewood property for symmetric spaces”, Siberian Math. J., 18:3 (1977), 522–540 (in Russian)
[2] A. S. Veksler, “Ergodic theorem in symmetric spaces”, Siberian Math. J., 26:4 (1985), 189–191 (in Russian)
[3] A. S. Veksler, Statistical Ergodic Theorems in Symmetric Spaces, Lambert Academic Publishing, 2018 (in Russian)
[4] A. S. Veksler, A. L. Fedorov, “Statistical ergodic theorem in nonseparable symmetric spaces of functions”, Siberian Math. J., 29:3 (1989), 183–185 (in Russian)
[5] A. S. Veksler, A. L. Fedorov, Symmetric Spaces and Statistical Ergodic Theorems for Automorphisms and Flows, FAN, Tashkent, 2016 (in Russian)
[6] V. G. Vinokurov, B. A. Rubshteyn, A. L. Fedorov, Lebesgue Space and Its Measurable Partitions, TashGU, Tashkent, 1986 (in Russian)
[7] G. Ya. Lozanovskiy, “On Calderon Banach structures”, Rep. Acad. Sci. USSR, 172:5 (1967), 1018–1020 (in Russian)
[8] A. A. Mekler, On averaged majorization of functions by means of permutations, Proc. LIAP, 84, 1974 (in Russian)
[9] A. A. Mekler, “Intermediate spaces and bistochastic projectors”, Math. Research, 10:1 (1975), 270–275 (in Russian)
[10] A. A. Mekler, Averaging operators over $\sigma$-subalgebras on ideals in $L_1(\mu)$, PhD Thesis, L., 1977 (in Russian)
[11] B. S. Mityagin, “Interpolational theorem for modular spaces”, Math. Digest, 66 (1965), 473–482 (in Russian)
[12] M. A. Muratov, Yu. S. Pashkova, “Dominant ergodic theorem in Orlicz spaces of measurable functions on a semiaxis”, Tavricheskiy Bull. Inform. Math., 2006, no. 2, 47–59 (in Russian)
[13] M. A Muratov A, Yu. S. Pashkova, B. A. Rubshteyn, “Dominant ergodic theorem in symmetric spaces of measurable functions for a sequence of absolute contractions”, Sci. Notes Vernadskii Tavria Nats. Univ., 17:2 (2003), 36–48 (in Russian)
[14] M. A Muratov A, Yu. S. Pashkova, B. A. Rubshteyn, “Dominant ergodic theorem in Lorentz spaces”, Sci. Notes Vernadskii Tavria Nats. Univ., 22:1 (2009), 86–92 (in Russian)
[15] M. A Muratov, B. A. Rubshteyn, A. S. Veksler, “Convergence with a regulator in ergodic theorems”, Sci. Notes Vernadskii Tavria Nats. Univ., 24:1 (2011), 23–34 (in Russian)
[16] V. A. Rokhlin, “On basic concepts in the measure theory”, Math. Digest, 25:1 (1949), 107–150 (in Russian)
[17] V. A. Rokhlin, “Metric classification of measurable functions”, Progr. Math. Sci., 12 (1957), 169–174 (in Russian)
[18] G. I. Russu, “Symmetric spaces of functions without majorant property”, Math. Research, 4 (1969), 82–93 (in Russian)
[19] E. M. Semenov, “On one scale of spaces with interpolation property”, Rep. Acad. Sci. USSR, 148:5 (1963), 1038–1041 (in Russian)
[20] E. M. Semenov, “Embedding theorems for Banach spaces of measurable functions”, Rep. Acad. Sci. USSR, 156:6 (1964), 1292–1295 (in Russian)
[21] Aaronson J., An introduction to infinite ergodic theory, AMS, Providence, 1997
[22] Agora E., Antezana J., Carro M. J., Soria J., “Lorentz–Shmogaki an Boyd theorems for weighted Lorentz spaces”, J. London Math. Soc., 89 (2014), 321–336
[23] Aoki T., “Locally bounded linear topological spaces”, Proc. Imp. Acad. Tokyo, 18 (1947), 588–594
[24] Astashkin S. V., “On the normability of Marcinkiewicz classes”, Math. Notes, 81 (2007), 429–431
[25] Bennett C., Sharpley R., Interpolation of operators, Academic Press, Boston, etc., 1988
[26] Birkhof G. D., “Proof of the ergodic theorem”, Proc. Natl. Acad. Sci. USA, 17 (1931), 656–660
[27] Boyd D. V., “Indices of function spaces and their relationship to interpolation”, Can. J. Math., 21 (1969), 1245–1254
[28] Braverman M., Rubshtein B-Z., Veksler A., “Dominated ergodic theorems in rearrangement invariant spaces”, Stud. Math., 128 (1998), 145–157
[29] Calderon A. P., “Spaces between $L^1$ and $L^\infty$ and the theorem of Marcinkewicz”, Stud. Math., 26 (1966), 273–299
[30] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139
[31] Carro M. J., Soria J., “Weighted Lorentz spaces and Hardy operator”, J. Funct. Anal., 112 (1993), 480–494
[32] Cerda J., Hudzik H., Kaminska A., Mastylo M., “Geometric properties of symmetric spaces with applications to Orlicz–Lorentz spaces”, Positivity, 2 (1998), 311–337
[33] Chilin V. I., Krygin A. V., Sukochev F. A., “Extreme points of convex fully symmetric sets of measurable operators”, Integral Equ. Oper. Theory, 15 (1992), 186–226
[34] Chilin V., Litvinov S., “Almost uniform and strong convergence in ergodic theorems for symmetric spaces”, Acta Math. Hungar., 157 (2019), 229–253
[35] Cwicel M., Kaminska A., Maligranda L., Pick L., Are generalized Lorentz “spaces” really spaces?, Proc. Am. Math. Soc., 132 (2003), 3615–3625
[36] Dodds P. G., De Pagter B., Semenov E. M., Sukochev F. A., “Symmetric functionals and singular traces”, Positivity, 2 (1998), 47–75
[37] Dodds P. G., Sukochev F. A., Schlichtermann G., “Weak compactness criteria in symmetric spaces of measurable operators”, Math. Proc. Cambridge Philos. Soc., 131 (2001), 363–384
[38] Dunford N., Schwartz J., Linear Operators, v. 1, Interscience, New York, 1958
[39] Edgar G. A., Sucheston L., Stopping Times and Directed Processes, Cambridge University Press, Cambridge, 1992
[40] Edmunds D. E., Evans W. D., Hardy Operators, Function Spaces and Embeddings, Springer, Berlin, 2004
[41] Florenza A., Krbec M., “Indices of Orlicz spaces and some applications”, Comment. Math. Univ. Carolin., 38 (1997), 433–451
[42] Fremlin D. H., Measure Theory, v. 2, Broad Foundation, Torres Fremlin, Colchester, 2003
[43] Grabarnik G. Ya., Rubshtein B.-Z. A., On the Marcinkiewicz classes, Preprint, 2020
[44] Hardy G. H., Littlewood J. E., “A maximal theorem with function-theoretic application”, Acta Math., 54 (1930), 81–116
[45] Harjulehto P., Hästö P., Orlicz Spaces and Generalized Orlicz Spaces, Springer, Cham, 2019
[46] Hopf E., “On the ergodic theorem for positive linear operators”, J. Reine Angew. Math., 295 (1960), 101–106
[47] Hudzik H., Kaminska A., Mastylo M., “Geometric properties of some Calderon–Lozanovskii and Orlicz–Lorentz spaces”, Houston J. Math., 22 (1996), 639–663
[48] Hudzik H., Kaminska A., Mastylo M., “Geometric properties of Orlicz–Lorentz spaces”, Can. Math. Bull., 40 (1997), 316–329
[49] Hudzik H., Kaminska A., Mastylo M., “On the dual of Orlicz–Lorentz spaces”, Proc. Am. Math. Soc., 130 (2003), 1645–1654
[50] Hunt R., “On $L(p,q)$-spaces”, L'Eins. Math., 12 (1966), 249–276
[51] Kakutani Sh., “Iterations of linear operator in complex Banach spaces”, Proc. Imp. Acad. Tokyo, 14 (1938), 295–300
[52] Kalton N. J., “Convexity, type and the three space problem”, Stud. Math., 69 (1980), 247–287
[53] Kalton N. J., “Linear operators on $L_p,$ $0
1$”, Trans. Am. Math. Soc., 259 (1980), 319–355[54] Kalton N. J., “Convexity conditions for non-locally convex lattices”, Glasgoo Math. J., 25 (1984), 141–152
[55] Kalton N. J., “Banach envelopes of non-locally convex spaces”, Can. J. Math., 38 (1986), 65–86
[56] Kalton N. J., “Quasi-Banach spaces”, Handbook of the Geometry of Banach spaces, North-Holland, Amsterdam, 2003, 1099–1106
[57] Kalton N. J., Kaminska A., “Type and order convexity of Marcinkiewicz and Lorentz spaces and applications”, Glasgow Math. J., 47 (2005), 123–137
[58] Kalton N. J., Sedaev A., Sukochev F. A., “Fully symmetric functionals on a Marcinkiewicz space and Dixmier traces”, Adv. Math., 226 (2011), 3540–3549
[59] Kalton N. J., Sukochev F. A., “Rearrangement-invariant functionals with application to traces on symmetrically normed ideals”, Can. Math. Bull., 51 (2008), 67–80
[60] Kalton N. J., Sukochev F. A., “Symmetric norms and spaces of operators”, J. Reine Angew. Math., 621 (2008), 81–121
[61] Kalton N. J., Sukochev F. A., Zanin D., “Orbits in symmetric spaces. II”, Stud. Math., 197 (2010), 257–274
[62] Kaminska A., “Extreme points in Orlicz–Lorentz spaces”, Arch. Math., 55 (1990), 173–180
[63] Kaminska A., “Some remarks on Orlicz–Lorentz spaces”, Math. Nachr., 147 (1990), 29–38
[64] Kaminska A., “Uniform convexity of generalized Lorentz spaces”, Arch. Math., 56 (1991), 181–188
[65] Kaminska A., Han Ju Lee, “$M$-ideal property in Marcinkiewicz spaces”, Ann. Soc. Math. Pol., Ser. I, Commentat. Math., 44:1 (2004), 123–144
[66] Kaminska A., Lin P. K., Sun H., “Uniformly normal structure of Orlicz–Lorentz spaces”, Interaction between Functional Analysis, Harmonic Analysis, and Probability, Proc. conf. Univ. Missouri (Columbia, USA, May 29–June 3, 1994), Marcel Dekker, New York, 1996, 229–238
[67] Kaminska A., Maligranda L., “Order convexity and concavity of Lorentz spaces $\Lambda_{p.w}, 0
\infty$”, Stud. Math., 160:3 (2004), 267–287[68] Kaminska A., Maligranda L., Persson L. E., “Indices, covexity and concavity of Calderon–Lozanovskii spaces”, Math. Scand., 92 (2003), 141–160
[69] Kaminska A., Zyluk M., Local geometric properties in quasi-normed Orlicz spaces, 2019, arXiv: 1911.10256v1 [Math.FA]
[70] Kantorovich L. V., Akilov G. V., Functional Analysis, Pergamon Press, Oxford, etc., 1982
[71] Koshi Sh., Shimogaki T., “On quasi-modular spaces”, Stud. Math., 21 (1961), 15–36
[72] Krasnoselskii M. A., Rutitzkii Ya. B., Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen–The Netherlands, 1961
[73] Krbec M., Lang J., “Embeddings between weighted Orlicz–Lorentz spaces”, Georg. Math. J., 4 (1997), 117–128
[74] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolation of Linear Operators, AMS, Providence, 1982
[75] Krengel U., Ergodic Theorems, De Gruyter, Berlin, 1985
[76] Lin P. K., Sun H., “Some geometric properties of Orlicz–Lorentz spaces”, Arch. Math., 64 (1995), 500–511
[77] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Sequence Spaces, Springer, Berlin–Heidelberg–New York, 1977
[78] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. II, Function Spaces, Springer, Berlin–Heidelberg–New York, 1979
[79] Lord S., Sedaev A., Sukochev F., “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 224 (2005), 72–206
[80] Lord S., Sukochev F., Zanin Z., Singular Traces. Theory and Applications, de Gruyter, Berlin, 2013
[81] Lorentz G. G., “Some new functional spaces”, Ann. Math., 51 (1950), 37–55
[82] Lorentz G. G., “On the theory of spaces $\mathbf{\Lambda}$”, Pacific J. Math., 1 (1951), 411–429
[83] Lorentz G. G., “Majorants in spaces of integrable function”, Amer. J. Math., 77 (1955), 484–492
[84] Lorentz G. G., Shimogaki T., “Majorants for interpolation theorems”, Publ. Ramanujan Inst., 1 (1969), 115–122
[85] Lozanovskii G. Ya., “On some Banach lattices II”, Sib. Math. J., 12 (1971), 397–401
[86] Luxemburg W. A. J., “Rearrangement invariant Banach function spaces”, Queen's Papers in Pure Appl. Math., 10 (1967), 83–144
[87] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. I, North-Holland, Amsterdam–London, 1971
[88] Matuszewska W., Orlicz W., “On certain properties of $\phi$-functions”, Bull. Acad. Polon. Sci., 8 (1960), 439–443
[89] Matuszewska W., Orlicz W., “On some classes of functions with regarg to their order of growth”, Stud. Math., 26 (1965), 11–24
[90] Mekler A. A., “On rearrangement invariant and majorant hulls of averages of rearrangement invariant and majorant ideals”, J. Math. Anal. Appl., 171 (1992), 555–566
[91] Mekler A. A., “On averaging of rearrangement ideals of the space $L_1(\Omega,\Sigma,\mu)$ by non-atomic $\sigma$-subalgebras of $\Sigma$”, Positivity, 14 (2010), 191–214
[92] Mekler A. A., Conditianal expectations and interpolation of linear operators on ordered ideals between $L_1(0,1)$ and $L_1(0,1)$, 2018, arXiv: 1803.09796v1
[93] Montgomery-Smith S. J., “Orlicz–Lorentz spaces” (Oxford, USA, March 21–23, 1991), Proc. of the Orlicz Mem. Conf., 6, Univ. Mississippi, Oxford, 1991, 1–11
[94] Montgomery-Smith S. J., “Comparison of Orlicz–Lorentz spaces”, Stud. Math., 103 (1992), 161–189
[95] Montgomery-Smith S. J., “Boyd indices of Orlicz–Lorentz spaces”, Proc. Second Conf. Function Spaces (Edwardsville, USA, May 24–28, 1994), Marcel Dekker, New York, 1995, 321–334
[96] Montgomery-Smith S. J., “The Hardy operator and Boyd indices”, Proc. Conf. «Interaction between functional Analysis, Harmonic Analysis, and Probability» (Columbia, USA, May 29–June 3, 1994), Marcel Dekker, New York, 1996, 359–364
[97] Mori T., Amemiya I., Nakano H., “On the reflexivity of semi-continuous norms”, Proc. Jap. Acad., 31 (1955), 684–685
[98] Muratov M. A., Pashkova J. S., Rubshtein B.-Z. A., “Order convergence ergodic theorems in rearrangement invariant spaces”, Oper. Theory Adv. Appl., 227 (2013), 123–142
[99] Muratov M. A., Rubshtein B.-Z. A., “Main embedding theorems for symmetric spaces of measurable functions”, Proc. 8th Int. Conf. «Topological Algebras and Their Applications» (Playa de Villas de Mar Beach, Dominican Republic, May 26–30, 2014), De Gruyter, Berlin, 2018, 176–192
[100] Muratov M. A., Rubshtein B.-Z. A., Equimeasurable symmetric spaces of measurable functions, 2020, arXiv: 2006.15702v1 [math.FA]
[101] Musielak J., Orlicz Spaces and Modular Spaces, Springer, Berlin, etc., 1983
[102] Nakano H., Modular Semiordered Linear Spaces, Maruzen, Tokyo, 1950
[103] Orlicz W., “Über eine gewisse Klasse von Räumen von Typus B”, Bull. Int. Acad. Polon. Sci. Ser. A, 1932, no. 8-9, 207–220
[104] Orlicz W., “Über Räume $(L^M)$”, Bull. Int. Acad. Polon. Sci. Ser. A, 1936 (1936), 93–107
[105] Ornstein D. S., “A remark on the Birkhoff ergodic theorem”, Illinois J. Math., 15 (1971), 77–79
[106] Rao M. M., Theory of Orlicz Spaces, M. Dekker, New York, 1991
[107] Rao M. M., Ren Z. D., Applications of Orlicz Spaces, M. Dekker, New York, 2002
[108] Riesz F., “Some mean ergodic theorems”, J. London Math. Soc., 13 (1938), 274–278
[109] Rolewicz S., “On a certain class of metric linear spaces”, Bull. Acad. Pol. Sci. Cl. III, 5 (1957), 471–473
[110] Rolewicz S., Metric Linear Spaces, PWM, Warsaw, 1972
[111] Rubshtein B.-Z. A., Grabarnik G. Ya., Muratov M. A., Pashkova Yu. S., Foundations of Symmetric Spaces of Measurable Functions. Lorentz, Marcinkiewicz and Orlicz Spaces, Springer, Cham, 2016
[112] Ryff J. V., “Orbits of $L^1$-functions under doubly stochastic operators”, Trans. AMS, 117 (1965), 92–100
[113] Ryff J. V., “Measure preserving transformation and rearrangements”, J. Math. Anal. Appl., 31:2 (1970), 449–458
[114] Sawyer E. T., “Boundedness of classical operators in classical Lorentz spaces”, Stud. Math., 96 (1990), 145–158
[115] Shimogaki T., “Hardy–Littlewood majorants in function spaces”, J. Math. Soc. Japan, 17 (1965), 365–375
[116] Shimogaki T., “On the complete continuity of operators in an interpolation theorem”, J. Funct. Anal., 2 (1968), 31–51
[117] Shimogaki T., “A note on norms of compression operators”, Proc. Jap. Acad., 46 (1970), 239–249
[118] Sine R. C., “A mean ergodic theorem”, Proc. Am. Math. Soc., 24 (1970), 438–439
[119] Soria J., “Lorentz spaces of weak type”, Quart. J. Math. Oxford, 46 (1998), 93–103
[120] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971
[121] Sukochev F. A., Veksler A. S., “The mean ergodic theorem in symmetric spaces”, Stud. Math., 245 (2019), 229–253
[122] Sukochev F. A., Zanin D., “Orbits in symmetric spaces”, J. Funct. Anal., 257 (2009), 194–218
[123] Sukochev F. A., Zanin D., “Traces on symmetrically normed operator ideals”, J. Reine Ang. Math., 678 (2013), 163–299
[124] Yosida K., “Mean ergodic theorems in Banach spaces”, Proc. Imp. Acad. Tokyo, 14 (1938), 292–294
[125] Yosida K., Kakutani Sh., “Operator-theoretical treatment of Markoff's process and mean ergodic theorems”, Anal. Math., 42 (1941), 188–228
[126] Zaanen A. C., Integration, North-Holland, Amsterdam, 1967
[127] Zaanen A. C., Riesz Spaces II, North-Holland, Amsterdam–New York–Oxford, 1983
[128] Zanin D., Orbits and Khinchine-type inequalities in symmetric spaces, Ph.D. Thesis, Flinders Univ., 2011
[129] Zippinn M., “Interpolation of operators of weak type between rearrangement invariant spaces”, J. Funct. Anal., 7 (1971), 267–284