Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_2_a2, author = {D. A. Zakora and N. D. Kopachevsky}, title = {To the problem on small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {182--208}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a2/} }
TY - JOUR AU - D. A. Zakora AU - N. D. Kopachevsky TI - To the problem on small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 182 EP - 208 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a2/ LA - ru ID - CMFD_2020_66_2_a2 ER -
%0 Journal Article %A D. A. Zakora %A N. D. Kopachevsky %T To the problem on small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem %J Contemporary Mathematics. Fundamental Directions %D 2020 %P 182-208 %V 66 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a2/ %G ru %F CMFD_2020_66_2_a2
D. A. Zakora; N. D. Kopachevsky. To the problem on small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 66 (2020) no. 2, pp. 182-208. http://geodesic.mathdoc.fr/item/CMFD_2020_66_2_a2/
[1] T. Ya. Azizov, I. S. Iokhvidov, Fundamentals of the Theory of Linear Operators in Spaces with Indefinite Metric, Nauka, M., 1986 (in Russian)
[2] J. Goldstein, Semigroups of Linear Operators and Applications, Russian translation, Vyshcha shkola, Kiev, 1989
[3] T. Kato, Perturbation Theory for Linear Operators, Russian translation, Mir, M., 1972
[4] N. D. Kopachevsky, Abstract Green's Formula and Applications, OOO «Forma», Simferopol', 2016 (in Russian)
[5] N. D. Kopachevsky, “To the problem on small motions of the system of two viscoelastic fluids in a fixed vessel”, Contemp. Math. Fundam. Directions, 64, no. 3, 2018, 547–572 (in Russian)
[6] N. D. Kopachevsky, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamic. Evolutional and Spectral Problems, Nauka, M., 1989 (in Russian)
[7] C. G. Kreyn, “On oscillations of a viscous fluid in a vessel”, Rep. Acad. Sci. USSR, 159:2 (1964), 262–265 (in Russian)
[8] C. G. Kreyn, Linear Differential Equations in a Banach Space, Nauka, M., 1967 (in Russian)
[9] C. G. Kreyn, G. I. Laptev, “To the problem on motion of a viscous liquid in an open vessel”, Funct. Anal. Appl., 2:1 (1968), 40–50 (in Russian)
[10] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, «Shtiintsa», Kishinev, 1986 (in Russian)
[11] A. S. Markus, V. I. Matsaev, “Comparison theorems for spectra of linear operators and spectral asymptotics”, Proc. Moscow Math. Soc., 45, 1982, 133–181 (in Russian)
[12] A. S. Markus, V. I. Matsaev, “Theorem on spectra comparison and spectral asymptotics for the Keldysh pencil”, Math. Digest, 123:3 (1984), 391–406 (in Russian)
[13] A. I. Miloslavskiy, Spectral analysis of small oscillations of viscoelastic fluid in open container, Preprint No 1221, Univ. Math. NAS Ukraine, Kiev, 1989 (in Russian)
[14] A. I. Miloslavskiy, “Spectrum of small oscillation of viscoelastic fluid in open vessel”, Progr. Math. Sci., 44:4 (1989) (in Russian)
[15] A. I. Miloslavskiy, “Spectrum of small oscillations of viscoelastic inheritance medium”, Rep. Acad. Sci. USSR, 309:3 (1989), 532–536 (in Russian)
[16] Azizov T. Ya., Kopachevskii N. D., Orlova L. D., “Evolution and spectral problems related to small motions of viscoelastic fluid”, Am. Math. Soc. Transl., 199 (2000), 1–24
[17] Birman M. Sh., Solomyak M. Z., “Asymptotic behavior of the spectrum of differential equations”, J. Soviet Math., 12:3 (1979), 247–283
[18] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000
[19] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 284–305
[20] Gohberg I., Goldberg S., Kaashoek M. A., Classes of Linear Operators, v. 1, Birkhäuser, Basel–Boston–Berlin, 1990
[21] Helton J. W., “Unitary operators on a space with an indefinite inner product”, J. Funct. Anal., 6:3 (1970), 412–440
[22] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin, 2003
[23] Miloslavsky A. I., “Stability of certain classes of evolution equations”, Sib. Math. J., 26:5 (1985), 723–735
[24] Miloslavskii A. I., “Stability of a viscoelastic isotropic medium”, Soviet Phys. Dokl., 33 (1988), 300