Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_4_a9, author = {A. V. Faminskii and E. V. Martynov}, title = {On initial-boundary value problem on semiaxis for generalized {Kawahara} equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {683--699}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/} }
TY - JOUR AU - A. V. Faminskii AU - E. V. Martynov TI - On initial-boundary value problem on semiaxis for generalized Kawahara equation JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 683 EP - 699 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/ LA - ru ID - CMFD_2019_65_4_a9 ER -
%0 Journal Article %A A. V. Faminskii %A E. V. Martynov %T On initial-boundary value problem on semiaxis for generalized Kawahara equation %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 683-699 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/ %G ru %F CMFD_2019_65_4_a9
A. V. Faminskii; E. V. Martynov. On initial-boundary value problem on semiaxis for generalized Kawahara equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 683-699. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/
[1] A. T. Il'ichev, “On the properties of one fifth-order nonlinear evolution equation describing wave processes in media with weak dispersion”, Proc. Math. Inst. Russ. Acad. Sci., 186, 1989, 222–226 (in Russian)
[2] R. V. Kuvshinov, A. V. Faminskiy, “Mixed problem in a half-strip for the Kawahara equation”, Differ. Equ., 45:3 (2009), 391–402 (in Russian) | MR | Zbl
[3] A. V. Marchenko, “On long waves in shallow water under the ice cover”, Appl. Math. Mech., 52:2 (1988), 230–234 (in Russian) | Zbl
[4] P. I. Naumkin, “Estimates of decreasing for solutions of the Cauchy problem for the modified Kawahara equation”, Math. Digest, 210:5 (2019), 72–108 (in Russian) | DOI | MR | Zbl
[5] M. A. Opritova, A. V. Faminskiy, “On the initial-boundary value problem in a half-strip for generalized Kawahara equation”, Ukr. Math. Bull., 11:3 (2014), 312–339 (in Russian)
[6] M. A. Opritova, A. V. Faminskiy, “On decreasing for large time values of solutions of the initial-boundary value problem for the generalized Kawahara equation in a half-strip”, Bull. Tambov State Univ., 20:5 (2015), 1331–1337 (in Russian)
[7] K. Sangare, “Mixed problem in a half-strip for the generalized Kawahara equation in the space of infinitely differentiable exponentially decreasing functions”, Bull. Peoples' Friendship Univ. Russ. Ser. Math., 10:1 (2003), 91–107 (in Russian)
[8] K. Sangare, A. V. Faminskiy, “Weak solutions of mixed problem for the generalized Kawahara equation in a half-strip”, Math. Notes, 85:1 (2009), 98–109 (in Russian) | DOI | MR | Zbl
[9] N. A. Shananin, “On partial quasianalyticity of generalized solutions of weakly nonlinear differential equations with weighted derivatives”, Math. Notes, 68:4 (2000), 608–619 (in Russian) | DOI | Zbl
[10] F. D. Araruna, R. A. Capisrano-Filho, G. G. Doronin, “Energy decay for the modified Kawahara equation posed in a bounded domain”, J. Math. Anal. Appl., 385:2 (2012), 743–756 | DOI | MR | Zbl
[11] M. M. Cavalcanti, V. N. Domingos Cavalcanti, A. Faminskii, F. Natali, “Decay of solutions to damped Korteweg—de Vries equation”, Appl. Math. Optim., 65 (2012), 221–251 | DOI | MR | Zbl
[12] M. Cavalcanti, Ch. Kwak, The initial-boundary value problem for the Kawahara equation on the half-line, 2018, arXiv: 1805.05229 [math.AP]
[13] W. Chen, Z. Guo, “Global well-posedness and I-method for the fifth-order Korteweg—de Vries equation”, J. Anal. Math., 114:1 (2011), 121–156 | DOI | MR | Zbl
[14] G. G. Doronin, N. A. Larkin, “Quarter-plane problem for the Kawahara equation”, Pac. J. Appl. Math., 1:3 (2008), 151–176
[15] G. G. Doronin, F. Natali, “Exponential decay for a locally damped fifth-order equation posed on a line”, Nonlinear Anal., Real World Appl., 30 (2016), 59–72 | DOI | MR | Zbl
[16] A. V. Faminskii, N. A. Larkin, “Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval”, Electron. J. Differ. Equ., 2010, no. 1, 1–20 | MR
[17] A. V. Faminskii, E. V. Martynov, “Large-time decay of solutions to the damped Kawahara equation posed on a half-line”, Differential Equations on Manifolds and Mathematical Physics (to appear)
[18] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Jpn., 33:1 (1972), 260–264 | DOI
[19] S. Kichenassamy, P. J. Olver, “Existence and nonexistence of solitary wave solutions to higher-order model evolution equations”, SIAM J. Math. Anal., 23:5 (1992), 1141–1166 | DOI | MR | Zbl
[20] N. A. Larkin, M. Simoes, “The Kawahara equation on bounded intervals and on a half-line”, Nonlinear Anal., 127 (2015), 397–412 | DOI | MR | Zbl
[21] F. Linares, A. F. Pazoto, “Asymptotic behavior of the Korteweg—de Vries equation posed in a quarter plane”, J. Differ. Equ., 246 (2009), 1342–1353 | DOI | MR | Zbl
[22] A. F. Pazoto, R. Rosier, “Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line”, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1511–1535 | MR | Zbl
[23] S. P. Tao, S. B. Cui, “Local and global existence of solutions to initial value problems of modified nonlinear Kawahara equation”, Acta Math. Sin. (Engl. Ser.), 21:5 (2005), 1035–1044 | DOI | MR | Zbl
[24] C. F. Vasconcellos, P. N. da Silva, “Stabilization of the Kawahara equation with localized damping”, ESAIM Control. Optim. Calc. Var., 17 (2011), 102–116 | DOI | MR | Zbl