On initial-boundary value problem on semiaxis for generalized Kawahara equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 683-699

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider initial-boundary value problem on semiaxis for generalized Kawahara equation with higher-order nonlinearity. We obtain the result on existence and uniqueness of the global solution. Also, if the equation contains the absorbing term vanishing at infinity, we prove that the solution decays at large time values.
@article{CMFD_2019_65_4_a9,
     author = {A. V. Faminskii and E. V. Martynov},
     title = {On initial-boundary value problem on semiaxis for generalized {Kawahara} equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {683--699},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/}
}
TY  - JOUR
AU  - A. V. Faminskii
AU  - E. V. Martynov
TI  - On initial-boundary value problem on semiaxis for generalized Kawahara equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 683
EP  - 699
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/
LA  - ru
ID  - CMFD_2019_65_4_a9
ER  - 
%0 Journal Article
%A A. V. Faminskii
%A E. V. Martynov
%T On initial-boundary value problem on semiaxis for generalized Kawahara equation
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 683-699
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/
%G ru
%F CMFD_2019_65_4_a9
A. V. Faminskii; E. V. Martynov. On initial-boundary value problem on semiaxis for generalized Kawahara equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 683-699. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a9/