On the algebra of operators corresponding to the union of smooth submanifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 672-682
Voir la notice de l'article provenant de la source Math-Net.Ru
For a pair of smooth transversally intersecting submanifolds in
some enveloping smooth manifold, we study the algebra generated by
pseudodifferential operators and (co)boundary operators
corresponding to submanifolds. We establish that such an algebra
has 18 types of generating elements. For operators from this
algebra, we define the concept of symbol and obtain the
composition formula.
@article{CMFD_2019_65_4_a8,
author = {D. A. Poluektova and A. Yu. Savin and B. Yu. Sternin},
title = {On the algebra of operators corresponding to the union of smooth submanifolds},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {672--682},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/}
}
TY - JOUR AU - D. A. Poluektova AU - A. Yu. Savin AU - B. Yu. Sternin TI - On the algebra of operators corresponding to the union of smooth submanifolds JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 672 EP - 682 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/ LA - ru ID - CMFD_2019_65_4_a8 ER -
%0 Journal Article %A D. A. Poluektova %A A. Yu. Savin %A B. Yu. Sternin %T On the algebra of operators corresponding to the union of smooth submanifolds %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 672-682 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/ %G ru %F CMFD_2019_65_4_a8
D. A. Poluektova; A. Yu. Savin; B. Yu. Sternin. On the algebra of operators corresponding to the union of smooth submanifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 672-682. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/