Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_4_a8, author = {D. A. Poluektova and A. Yu. Savin and B. Yu. Sternin}, title = {On the algebra of operators corresponding to the union of smooth submanifolds}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {672--682}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/} }
TY - JOUR AU - D. A. Poluektova AU - A. Yu. Savin AU - B. Yu. Sternin TI - On the algebra of operators corresponding to the union of smooth submanifolds JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 672 EP - 682 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/ LA - ru ID - CMFD_2019_65_4_a8 ER -
%0 Journal Article %A D. A. Poluektova %A A. Yu. Savin %A B. Yu. Sternin %T On the algebra of operators corresponding to the union of smooth submanifolds %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 672-682 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/ %G ru %F CMFD_2019_65_4_a8
D. A. Poluektova; A. Yu. Savin; B. Yu. Sternin. On the algebra of operators corresponding to the union of smooth submanifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 672-682. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a8/
[1] M. I. Zelikin, B. Yu. Sternin, “On one system of integral equations arising in the Sobolev problem”, Siberian Math. J., 18:1 (1977), 97–102 (in Russian) | MR | Zbl
[2] D. A. Loshchenova, “Sobolev problems associated with actions of Lie groups”, Differ. Equ., 51:8 (2015), 1056–1069 (in Russian) | DOI
[3] V. E. Nazaykinskiy, B. Yu. Sternin, “On the Green operator in the relative elliptic theory”, Rep. Russ. Acad. Sci., 391:3 (2003), 306–309 (in Russian) | MR | Zbl
[4] L. L. Nguyen, “On nonlocal Sobolev problems”, Differ. Equ., 48:8 (2012), 1192–1196 (in Russian) | MR
[5] S. P. Novikov, B. Yu. Sternin, “Traces of elliptic operators on submanifolds and the $K$-theory”, Rep. Acad. Sci. USSR, 170:6 (1966), 1265–1268 (in Russian) | Zbl
[6] A. Yu. Savin, B. Yu. Sternin, “Elliptic translators on manifolds with multidimensional singularities”, Differ. Equ., 49:4 (2013), 513–527 (in Russian) | Zbl
[7] A. Yu. Savin, B. Yu. Sternin, “The index of Sobolev problems on manifolds with multidimensional singularities”, Differ. Equ., 50:2 (2014), 229–241 (in Russian) | DOI | Zbl
[8] B. Yu. Sternin, “Elliptic and parabolic problems on manifolds with the boundary consisting of components of different dimension”, Proc. Moscow Math. Soc., 15, 1966, 346–382 (in Russian) | Zbl
[9] B. Yu. Sternin, “Elliptic (co)boundary morphisms”, Rep. Acad. Sci. USSR, 172:1 (1967), 44–47 (in Russian) | Zbl
[10] B. Yu. Sternin, “Elliptic morphisms on manifolds with singularities (rigging of an elliptic operator)”, Rep. Acad. Sci. USSR, 200:1 (1971), 45–48 (in Russian) | Zbl
[11] B. Yu. Sternin, V. E. Shatalov, “Relative elliptic theory and the Sobolev problem”, Math. Digest, 187:11 (1996), 115–144 (in Russian) | DOI | MR | Zbl
[12] L. Hörmander, “Pseudo-differential operators”, Commun. Pure Appl. Math., 18 (1965), 501–517 | DOI | MR | Zbl
[13] V. Nazaikinskii, B. Sternin, “Relative elliptic theory”, Aspects of Boundary Problems in Analysis and Geometry, Birkhäuser, Basel—Boston—Berlin, 2004, 495–560 | DOI | MR | Zbl
[14] S. Rempel, B. W. Schulze, Index theory of elliptic boundary problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl