Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_4_a5, author = {V. A. Krasnov}, title = {On application of contemporary proof of the {Sforza} formula to computation of volumes of hyperbolic tetrahedra of special kind}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {623--634}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/} }
TY - JOUR AU - V. A. Krasnov TI - On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 623 EP - 634 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/ LA - ru ID - CMFD_2019_65_4_a5 ER -
%0 Journal Article %A V. A. Krasnov %T On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 623-634 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/ %G ru %F CMFD_2019_65_4_a5
V. A. Krasnov. On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 623-634. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/
[1] N. V. Abrosimov, B. Vuong Huu, “Volume of hyperbolic tetrahedron with the group of symmetry $S_4$”, Proc. Inst. Math. Mech. Ural Branch Russ. Acad. Sci., 23, no. 4, 2017, 7–17 (in Russian) | MR
[2] E. B. Vinberg, “Volumes of non-Euclidean polyhedra”, Progr. Math. Sci., 48:2 (1993), 17–46 (in Russian) | MR | Zbl
[3] N. I. Lobachevskiy, “Imaginary geometry”, Full Collection of Works, v. 3, M.–L., 1949 (in Russian)
[4] N. V. Abrosimov, A. D. Mednykh, “Volumes of polytopes in spaces of constant curvature”, Rigidity and Symmetry, 70 (2014), 1–26 | DOI | MR | Zbl
[5] J. Bolyai, “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987
[6] Yu. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl
[7] D. A. Derevnin, A. D. Mednykh, “A formula for the volume of hyperbolic tetrahedron”, Russ. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[8] R. Kellerhals, “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl
[9] H. Kneser, “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340
[10] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc., 6:1 (1982), 307–332 | DOI | MR
[11] J. Murakami, The volume formulas for a spherical tetrahedron, 2011, arXiv: 1011.2584v4 | MR
[12] J. Murakami, A. Ushijima, “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1–2 (2005), 153–163 | DOI | MR | Zbl
[13] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl
[14] L. Schläfli, “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI | MR
[15] G. Sforza, “Spazi metrico-proiettivi”, Ric. Esten. Different. Ser., 8:3 (1906), 3–66
[16] A. Ushijima, “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl