On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 623-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group $S_4$) via dihedral angles.
@article{CMFD_2019_65_4_a5,
     author = {V. A. Krasnov},
     title = {On application of contemporary proof of the {Sforza} formula to computation of volumes of hyperbolic tetrahedra of special kind},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {623--634},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 623
EP  - 634
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/
LA  - ru
ID  - CMFD_2019_65_4_a5
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 623-634
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/
%G ru
%F CMFD_2019_65_4_a5
V. A. Krasnov. On application of contemporary proof of the Sforza formula to computation of volumes of hyperbolic tetrahedra of special kind. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 623-634. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a5/

[1] N. V. Abrosimov, B. Vuong Huu, “Volume of hyperbolic tetrahedron with the group of symmetry $S_4$”, Proc. Inst. Math. Mech. Ural Branch Russ. Acad. Sci., 23, no. 4, 2017, 7–17 (in Russian) | MR

[2] E. B. Vinberg, “Volumes of non-Euclidean polyhedra”, Progr. Math. Sci., 48:2 (1993), 17–46 (in Russian) | MR | Zbl

[3] N. I. Lobachevskiy, “Imaginary geometry”, Full Collection of Works, v. 3, M.–L., 1949 (in Russian)

[4] N. V. Abrosimov, A. D. Mednykh, “Volumes of polytopes in spaces of constant curvature”, Rigidity and Symmetry, 70 (2014), 1–26 | DOI | MR | Zbl

[5] J. Bolyai, “Appendix. The theory of space”, Janos Bolyai, Budapest, 1987

[6] Yu. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl

[7] D. A. Derevnin, A. D. Mednykh, “A formula for the volume of hyperbolic tetrahedron”, Russ. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl

[8] R. Kellerhals, “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl

[9] H. Kneser, “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340

[10] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Am. Math. Soc., 6:1 (1982), 307–332 | DOI | MR

[11] J. Murakami, The volume formulas for a spherical tetrahedron, 2011, arXiv: 1011.2584v4 | MR

[12] J. Murakami, A. Ushijima, “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1–2 (2005), 153–163 | DOI | MR | Zbl

[13] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl

[14] L. Schläfli, “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI | MR

[15] G. Sforza, “Spazi metrico-proiettivi”, Ric. Esten. Different. Ser., 8:3 (1906), 3–66

[16] A. Ushijima, “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl