Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_4_a1, author = {B. S. Bardin and A. S. Panev}, title = {On translational rectilinear motion of a solid body carrying a movable inner mass}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {557--592}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/} }
TY - JOUR AU - B. S. Bardin AU - A. S. Panev TI - On translational rectilinear motion of a solid body carrying a movable inner mass JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 557 EP - 592 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/ LA - ru ID - CMFD_2019_65_4_a1 ER -
%0 Journal Article %A B. S. Bardin %A A. S. Panev %T On translational rectilinear motion of a solid body carrying a movable inner mass %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 557-592 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/ %G ru %F CMFD_2019_65_4_a1
B. S. Bardin; A. S. Panev. On translational rectilinear motion of a solid body carrying a movable inner mass. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 557-592. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/
[1] B. S. Bardin, “On shock-free jumps of the body carrying movable masses”, Proc. XVIII Int. Symp. “Dynamics of Vibroimpact Strongly Nonlinear Systems”, DYVIS 2015, 2015, 42–49 (in Russian)
[2] B. S. Bardin, A. S. Panev, “On periodic motions of a body with movable inner mass on horizontal surface”, Proc. Moscow Aviation Inst., 84 (2015) (in Russian)
[3] G. G. Bil'chenko, “Influence of a movable load on the motion of the carrier”, Analytical Mechanics, Stability, and Control, Proc. XI Int. Chetaev Conf., 2017, 37–44 (in Russian)
[4] N. N. Bolotnik, I. M. Zeydis, K. Tsimmermann, S. F. Yatsun, “Dynamics of controllable motions of vibrational systems”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2006, no. 5, 157–167 (in Russian) | Zbl
[5] N. N. Bolotnik, A. M. Nunuparov, V. G. Chashchukhin, “Capsular vibrational robot with electromagnetic gear and return spring: dynamics and motion control”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2016, no. 6, 146–160 (in Russian) | DOI | MR | Zbl
[6] N. N. Bolotnik, T. Yu. Figurina, “Optimal control of rectilinear motion of a solid body on rugged surface by means of transition of two inner masses”, Appl. Math. Mech., 72:2 (2008), 216–229 (in Russian) | MR | Zbl
[7] N. N. Bolotnik, T. Yu. Figurina, F. L. Chernous'ko, “Analysis and optimization of motion of the body controlled by a movable inner mass”, Appl. Math. Mech., 71:1 (2012), 3–22 (in Russian)
[8] N. N. Bolotnik, F. L. Chernous'ko, “Mobile robots controlled by movement of inner bodies”, Proc. Inst. Math. Mech. Ural Branch Russ. Acad. Sci., 16, no. 5, 2010, 213–222 (in Russian)
[9] L. Yu. Volkova, S. F. Yatsun, “Modelling of flat controllable motion of three-mass vibrational system”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2012, no. 6, 122–141 (in Russian) | Zbl
[10] L. Yu. Volkova, S. F. Yatsun, “Study of regularities of motion of the jumping robot for different positions of mounting point of the leg”, Nonlinear Dynamics, 9:2 (2013), 327–342 (in Russian)
[11] M. V. Golitsyna, “Periodical mode of motion of the vibrational robot under constrains of control”, Appl. Math. Mech., 82:1 (2018), 3–15 (in Russian) | MR
[12] M. V. Golitsyna, V. A. Samsonov, “Estimate of area of admissible parameters for the control system of the vibrational robot”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2018, no. 2, 85–101 (in Russian) | DOI | MR | Zbl
[13] A. P. Ivanov, Essentials of the Theory of Systems with Friction, Izhevskiy in-t komp. issl., Izhevsk, 2011 (in Russian)
[14] A. P. Ivanov, A. V. Sakharov, “Dynamics of the solid body with movable inner masses and the rotor on a rugged surface”, Nonlinear Dynamics, 8:4 (2012), 763–772 (in Russian)
[15] A. S. Panev, “On the motion of the solid body with movable inner mass on horizontal surface in a viscous media”, Proc. Moscow Aviation Inst., 98 (2018) (in Russian)
[16] N. A. Sobolev, K. S. Sorokin, “Experimental study of the model of vibrorobot with rotating masses”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2007, no. 5, 161–170 (in Russian) | Zbl
[17] K. S. Sorokin, “Motion of a mechanism on an inclined rugged plane by means of inner oscillating masses”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2009, no. 6, 150–158 (in Russian) | Zbl
[18] F. L. Chernous'ko, “On the motion of body containing movable inner mass”, Rep. Russ. Acad. Sci., 405:1 (2005), 56–60 (in Russian) | MR
[19] T. Yu. Figurina, “Optimal motion control for the system of two bodies on an axis”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2007, no. 2, 65–71 (in Russian) | MR | Zbl
[20] A. F. Filippov, “Differential equations with discontinuous right-hand side”, Math. Digest, 51:1 (1960), 99–128 (in Russian) | MR | Zbl
[21] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, M., 1985 (in Russian) | MR
[22] F. L. Chernous'ko, “Analysis and optimization of the motion of the body controlled by the movable inner mass”, Appl. Math. Mech., 70:6 (2006), 915–941 (in Russian) | MR | Zbl
[23] F. L. Chernous'ko, “Motion of a body on a plane by means of movable inner masses”, Rep. Russ. Acad. Sci., 470:4 (2016), 406–410 (in Russian) | DOI | MR
[24] F. L. Chernous'ko, “Optimal motion control for a two-masses system”, Rep. Russ. Acad. Sci., 480:5 (2018), 528–532 (in Russian) | Zbl
[25] S. F. Yatsun, P. A. Bezmen, K. A. Sapronov, S. B. Rublev, “Dynamics of the mobile vibrational robot with inner movable mass”, Bull. Kursk State Tech. Univ., 31:2 (2010), 21–31 (in Russian)
[26] S. F. Yatsun, L. Yu. Volkova, “Modelling of dynamical regimes of the vibrational robot moving on a surface with viscous friction”, Spec. Tech. Comm., 2012, no. 3, 25–29 (in Russian)
[27] S. F. Yatsun, I. V. Lupekhina, K. A. Sapronov, “Modelling of the motion of the jumping vibrational micro-robot”, Bull. Kursk State Tech. Univ., 27:2 (2009), 25–31 (in Russian)
[28] S. F. Yatsun, V. Ya. Mishchenko, D. I. Safarov, “Investigation of the motion of two-masses vibrational robot”, Bull. Higher Edu. Inst. Ser. Engineering, 2006, no. 5, 32–42 (in Russian)
[29] S. F. Yatsun, A. V. Razin'kova, A. N. Grankin, “Investigation of the motion of the vibrorobot with electromagnetic gear”, Bull. Higher Edu. Inst. Ser. Engineering, 2007, no. 5, 53–64 (in Russian)
[30] B. Bardin, A. Panev, “On dynamics of a rigid body moving on a horizontal plane by means of motion of an internal particle”, Vibroeng. Procedia, 8 (2016), 135–141
[31] B. S. Bardin, A. S. Panev, “On the motion of a rigid body with an internal moving point mass on a horizontal plane”, Proc. AIP Conf., 1959 (2018), 030002 | DOI | MR
[32] B. S. Bardin, A. S. Panev, “On the motion of a body with a moving internal mass on a rough horizontal plane”, Russ. J. Nonlin. Dyn., 14:4 (2018), 519–542 | MR | Zbl
[33] H. Fang, J. Xu, “Stick-slip effect in a vibration-driven system with dry friction: Sliding bifurcations and optimization”, J. Appl. Mech., 81:5 (2014), 061001 | DOI
[34] P. Vartholomeos, E. Papadopoulos, “Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators”, J. Dyn. Syst. Meas. Control. Trans. ASME, 128:1 (2006), 122–133 | DOI
[35] P. Vartholomeos, E. Papadopoulos, “Analysis and experiments on the force capabilities of centripetal-force-actuated microrobotic platforms”, IEEE Trans. Robot, 24 (2008), 588–599 | DOI
[36] P. Vartholomeos, E. Papadopoulos, K. Vlachos, “Analysis and motion control of a centrifugal-force microrobotic platform”, IEEE Trans. Automat. Sci. Eng., 10 (2013), 545–553 | DOI
[37] K. Vlachos, D. Papadimitriou, E. Papadopoulos, “Vibration-driven microrobot positioning methodologies for nonholonomic constraint compensation”, Engineering, 1 (2015), 66–72 | DOI
[38] Q. M. Wang, W. M. Zhang, J. C. Ju, “Kinematics and dynamics analysis of a micro-robotic platform driven by inertial-force propulsion”, Appl. Mech. Mater., 733 (2015), 531–534 | DOI
[39] Z. Xiong, X. Jian, “Locomotion analysis of a vibration-driven system with three acceleration controlled internal masses”, Adv. Mech. Eng., 7 (2015), 1–12 | MR