On translational rectilinear motion of a solid body carrying a movable inner mass
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 557-592

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the motion of the mechanical system consisting of the case (a solid body) and the inner mass (a material point). The inner mass circulates inside the case on a circle centered at the center of mass of the case. We suppose that absolute value of the velocity of circular motion of the inner mass is constant. The case moves translationally and rectilinearly on a flat horizontal surface with forces of viscous friction and dry Coulomb friction on it. The inner mass moves in vertical plane. We perform the full qualitative investigation of the dynamics of this system. We prove that there always exist a unique motion of the case with periodic velocity. We study all possible types of such a periodic motion. We establish that for any initial velocity, the case either reaches the periodic mode of motion in a finite time or asymptotically approaches to it depending on the parameters of the problem.
@article{CMFD_2019_65_4_a1,
     author = {B. S. Bardin and A. S. Panev},
     title = {On translational rectilinear motion of a solid body carrying a movable inner mass},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {557--592},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - A. S. Panev
TI  - On translational rectilinear motion of a solid body carrying a movable inner mass
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 557
EP  - 592
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/
LA  - ru
ID  - CMFD_2019_65_4_a1
ER  - 
%0 Journal Article
%A B. S. Bardin
%A A. S. Panev
%T On translational rectilinear motion of a solid body carrying a movable inner mass
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 557-592
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/
%G ru
%F CMFD_2019_65_4_a1
B. S. Bardin; A. S. Panev. On translational rectilinear motion of a solid body carrying a movable inner mass. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 557-592. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/