On translational rectilinear motion of a solid body carrying a movable inner mass
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 557-592.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the motion of the mechanical system consisting of the case (a solid body) and the inner mass (a material point). The inner mass circulates inside the case on a circle centered at the center of mass of the case. We suppose that absolute value of the velocity of circular motion of the inner mass is constant. The case moves translationally and rectilinearly on a flat horizontal surface with forces of viscous friction and dry Coulomb friction on it. The inner mass moves in vertical plane. We perform the full qualitative investigation of the dynamics of this system. We prove that there always exist a unique motion of the case with periodic velocity. We study all possible types of such a periodic motion. We establish that for any initial velocity, the case either reaches the periodic mode of motion in a finite time or asymptotically approaches to it depending on the parameters of the problem.
@article{CMFD_2019_65_4_a1,
     author = {B. S. Bardin and A. S. Panev},
     title = {On translational rectilinear motion of a solid body carrying a movable inner mass},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {557--592},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - A. S. Panev
TI  - On translational rectilinear motion of a solid body carrying a movable inner mass
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 557
EP  - 592
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/
LA  - ru
ID  - CMFD_2019_65_4_a1
ER  - 
%0 Journal Article
%A B. S. Bardin
%A A. S. Panev
%T On translational rectilinear motion of a solid body carrying a movable inner mass
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 557-592
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/
%G ru
%F CMFD_2019_65_4_a1
B. S. Bardin; A. S. Panev. On translational rectilinear motion of a solid body carrying a movable inner mass. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 557-592. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a1/

[1] B. S. Bardin, “On shock-free jumps of the body carrying movable masses”, Proc. XVIII Int. Symp. “Dynamics of Vibroimpact Strongly Nonlinear Systems”, DYVIS 2015, 2015, 42–49 (in Russian)

[2] B. S. Bardin, A. S. Panev, “On periodic motions of a body with movable inner mass on horizontal surface”, Proc. Moscow Aviation Inst., 84 (2015) (in Russian)

[3] G. G. Bil'chenko, “Influence of a movable load on the motion of the carrier”, Analytical Mechanics, Stability, and Control, Proc. XI Int. Chetaev Conf., 2017, 37–44 (in Russian)

[4] N. N. Bolotnik, I. M. Zeydis, K. Tsimmermann, S. F. Yatsun, “Dynamics of controllable motions of vibrational systems”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2006, no. 5, 157–167 (in Russian) | Zbl

[5] N. N. Bolotnik, A. M. Nunuparov, V. G. Chashchukhin, “Capsular vibrational robot with electromagnetic gear and return spring: dynamics and motion control”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2016, no. 6, 146–160 (in Russian) | DOI | MR | Zbl

[6] N. N. Bolotnik, T. Yu. Figurina, “Optimal control of rectilinear motion of a solid body on rugged surface by means of transition of two inner masses”, Appl. Math. Mech., 72:2 (2008), 216–229 (in Russian) | MR | Zbl

[7] N. N. Bolotnik, T. Yu. Figurina, F. L. Chernous'ko, “Analysis and optimization of motion of the body controlled by a movable inner mass”, Appl. Math. Mech., 71:1 (2012), 3–22 (in Russian)

[8] N. N. Bolotnik, F. L. Chernous'ko, “Mobile robots controlled by movement of inner bodies”, Proc. Inst. Math. Mech. Ural Branch Russ. Acad. Sci., 16, no. 5, 2010, 213–222 (in Russian)

[9] L. Yu. Volkova, S. F. Yatsun, “Modelling of flat controllable motion of three-mass vibrational system”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2012, no. 6, 122–141 (in Russian) | Zbl

[10] L. Yu. Volkova, S. F. Yatsun, “Study of regularities of motion of the jumping robot for different positions of mounting point of the leg”, Nonlinear Dynamics, 9:2 (2013), 327–342 (in Russian)

[11] M. V. Golitsyna, “Periodical mode of motion of the vibrational robot under constrains of control”, Appl. Math. Mech., 82:1 (2018), 3–15 (in Russian) | MR

[12] M. V. Golitsyna, V. A. Samsonov, “Estimate of area of admissible parameters for the control system of the vibrational robot”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2018, no. 2, 85–101 (in Russian) | DOI | MR | Zbl

[13] A. P. Ivanov, Essentials of the Theory of Systems with Friction, Izhevskiy in-t komp. issl., Izhevsk, 2011 (in Russian)

[14] A. P. Ivanov, A. V. Sakharov, “Dynamics of the solid body with movable inner masses and the rotor on a rugged surface”, Nonlinear Dynamics, 8:4 (2012), 763–772 (in Russian)

[15] A. S. Panev, “On the motion of the solid body with movable inner mass on horizontal surface in a viscous media”, Proc. Moscow Aviation Inst., 98 (2018) (in Russian)

[16] N. A. Sobolev, K. S. Sorokin, “Experimental study of the model of vibrorobot with rotating masses”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2007, no. 5, 161–170 (in Russian) | Zbl

[17] K. S. Sorokin, “Motion of a mechanism on an inclined rugged plane by means of inner oscillating masses”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2009, no. 6, 150–158 (in Russian) | Zbl

[18] F. L. Chernous'ko, “On the motion of body containing movable inner mass”, Rep. Russ. Acad. Sci., 405:1 (2005), 56–60 (in Russian) | MR

[19] T. Yu. Figurina, “Optimal motion control for the system of two bodies on an axis”, Bull. Russ. Acad. Sci. Ser. Theor. Control Syst., 2007, no. 2, 65–71 (in Russian) | MR | Zbl

[20] A. F. Filippov, “Differential equations with discontinuous right-hand side”, Math. Digest, 51:1 (1960), 99–128 (in Russian) | MR | Zbl

[21] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, M., 1985 (in Russian) | MR

[22] F. L. Chernous'ko, “Analysis and optimization of the motion of the body controlled by the movable inner mass”, Appl. Math. Mech., 70:6 (2006), 915–941 (in Russian) | MR | Zbl

[23] F. L. Chernous'ko, “Motion of a body on a plane by means of movable inner masses”, Rep. Russ. Acad. Sci., 470:4 (2016), 406–410 (in Russian) | DOI | MR

[24] F. L. Chernous'ko, “Optimal motion control for a two-masses system”, Rep. Russ. Acad. Sci., 480:5 (2018), 528–532 (in Russian) | Zbl

[25] S. F. Yatsun, P. A. Bezmen, K. A. Sapronov, S. B. Rublev, “Dynamics of the mobile vibrational robot with inner movable mass”, Bull. Kursk State Tech. Univ., 31:2 (2010), 21–31 (in Russian)

[26] S. F. Yatsun, L. Yu. Volkova, “Modelling of dynamical regimes of the vibrational robot moving on a surface with viscous friction”, Spec. Tech. Comm., 2012, no. 3, 25–29 (in Russian)

[27] S. F. Yatsun, I. V. Lupekhina, K. A. Sapronov, “Modelling of the motion of the jumping vibrational micro-robot”, Bull. Kursk State Tech. Univ., 27:2 (2009), 25–31 (in Russian)

[28] S. F. Yatsun, V. Ya. Mishchenko, D. I. Safarov, “Investigation of the motion of two-masses vibrational robot”, Bull. Higher Edu. Inst. Ser. Engineering, 2006, no. 5, 32–42 (in Russian)

[29] S. F. Yatsun, A. V. Razin'kova, A. N. Grankin, “Investigation of the motion of the vibrorobot with electromagnetic gear”, Bull. Higher Edu. Inst. Ser. Engineering, 2007, no. 5, 53–64 (in Russian)

[30] B. Bardin, A. Panev, “On dynamics of a rigid body moving on a horizontal plane by means of motion of an internal particle”, Vibroeng. Procedia, 8 (2016), 135–141

[31] B. S. Bardin, A. S. Panev, “On the motion of a rigid body with an internal moving point mass on a horizontal plane”, Proc. AIP Conf., 1959 (2018), 030002 | DOI | MR

[32] B. S. Bardin, A. S. Panev, “On the motion of a body with a moving internal mass on a rough horizontal plane”, Russ. J. Nonlin. Dyn., 14:4 (2018), 519–542 | MR | Zbl

[33] H. Fang, J. Xu, “Stick-slip effect in a vibration-driven system with dry friction: Sliding bifurcations and optimization”, J. Appl. Mech., 81:5 (2014), 061001 | DOI

[34] P. Vartholomeos, E. Papadopoulos, “Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators”, J. Dyn. Syst. Meas. Control. Trans. ASME, 128:1 (2006), 122–133 | DOI

[35] P. Vartholomeos, E. Papadopoulos, “Analysis and experiments on the force capabilities of centripetal-force-actuated microrobotic platforms”, IEEE Trans. Robot, 24 (2008), 588–599 | DOI

[36] P. Vartholomeos, E. Papadopoulos, K. Vlachos, “Analysis and motion control of a centrifugal-force microrobotic platform”, IEEE Trans. Automat. Sci. Eng., 10 (2013), 545–553 | DOI

[37] K. Vlachos, D. Papadimitriou, E. Papadopoulos, “Vibration-driven microrobot positioning methodologies for nonholonomic constraint compensation”, Engineering, 1 (2015), 66–72 | DOI

[38] Q. M. Wang, W. M. Zhang, J. C. Ju, “Kinematics and dynamics analysis of a micro-robotic platform driven by inertial-force propulsion”, Appl. Mech. Mater., 733 (2015), 531–534 | DOI

[39] Z. Xiong, X. Jian, “Locomotion analysis of a vibration-driven system with three acceleration controlled internal masses”, Adv. Mech. Eng., 7 (2015), 1–12 | MR