On one damping problem for a nonstationary control system with aftereffect
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 547-556.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a control system described by the system of differential-difference equations of neutral type with variable matrix coefficients and several delays. We establish the relation between the variational problem for the nonlocal functional describing the multidimensional control system with delays and the corresponding boundary-value problem for the system of differential-difference equations. We prove the existence and uniqueness of the generalized solution of this boundary-value problem.
@article{CMFD_2019_65_4_a0,
     author = {A. S. Adkhamova and A. L. Skubachevskii},
     title = {On one damping problem for a nonstationary control system with aftereffect},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {547--556},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a0/}
}
TY  - JOUR
AU  - A. S. Adkhamova
AU  - A. L. Skubachevskii
TI  - On one damping problem for a nonstationary control system with aftereffect
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 547
EP  - 556
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a0/
LA  - ru
ID  - CMFD_2019_65_4_a0
ER  - 
%0 Journal Article
%A A. S. Adkhamova
%A A. L. Skubachevskii
%T On one damping problem for a nonstationary control system with aftereffect
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 547-556
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a0/
%G ru
%F CMFD_2019_65_4_a0
A. S. Adkhamova; A. L. Skubachevskii. On one damping problem for a nonstationary control system with aftereffect. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 547-556. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a0/

[1] G. A. Kamenskii, A. D. Myshkis, “To the formulation of boundary-value problems for differential equations with delayed argument and several higher-order terms”, Differ. Equ., 10:3 (1974), 409–418 (in Russian) | Zbl

[2] N. N. Krasovskii, Theory of Motion Control, Nauka, M., 1968 (in Russian)

[3] A. V. Kryazhimskiy, V. I. Maksimov, Yu. S. Osipov, “On positional modelling in dynamical systems”, Appl. Math. Mech., 47:6 (1983), 883–890 (in Russian) | MR

[4] D. D. Leonov, “On a stabilization problem for a control system with aftereffect”, Contemp. Math. Fundam. Directions, 37, 2010, 28–37 (in Russian)

[5] Yu. S. Osipov, “On stabilization of controllable systems with delay”, Differ. Equ., 1:5 (1965), 605–618 (in Russian) | Zbl

[6] A. L. Skubachevskii, “To the damping problem for a control system with aftereffect”, Rep. Russ. Acad. Sci., 335:2 (1994), 157–160 (in Russian) | Zbl

[7] A. S. Adkhamova, A. L. Skubachevskii, “Damping problem for multidimensional control system with delays”, Distributed computer and communication networks, 19th international conference, DCCN 2016, Revised selected papers (Moscow, Russia, November 21–25, 2016), Springer, Cham, 2016, 612–623 | DOI | Zbl

[8] H. T. Banks, G. A. Kent, “Control of functional differential equations of retarded and neutral type to target sets in function space”, SIAM J. Control Optim., 10:4 (1972), 567–593 | DOI | MR | Zbl

[9] A. Halanay, “Optimal controls for systems with time lag”, SIAM J. Control Optim., 6 (1968), 213–234 | MR

[10] G. A. Kent, “A maximum principle for optimal control problems with neutral functional differential systems”, Bull. Am. Math. Soc., 77:4 (1971), 565–570 | DOI | MR | Zbl

[11] A. L. Skubachevskii, Elliptic functional differential equations and applications, Birkhauser, Basel—Boston—Berlin, 1997 | MR | Zbl