Multiplication of distributions and algebras of mnemofunctions
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 65 (2019) no. 3, pp. 339-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss methods and approaches for definition of multiplication of distributions, which is not defined in general in the classical theory. We show that this problem is related to the fact that the operator of multiplication by a smooth function is nonclosable in the space of distributions. We give the general method of construction of new objects called new distributions, or mnemofunctions, that preserve essential properties of usual distributions and produce algebras as well. We describe various methods of embedding of distribution spaces into algebras of mnemofunctions. All ideas and considerations are illustrated by the simplest example of the distribution space on a circle. Some effects arising in study of equations with distributions as coefficients are demonstrated by example of a linear first-order differential equation.
@article{CMFD_2019_65_3_a0,
     author = {A. B. Antonevich and T. G. Shahava},
     title = {Multiplication of distributions and algebras of mnemofunctions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {339--389},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - T. G. Shahava
TI  - Multiplication of distributions and algebras of mnemofunctions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 339
EP  - 389
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a0/
LA  - ru
ID  - CMFD_2019_65_3_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A T. G. Shahava
%T Multiplication of distributions and algebras of mnemofunctions
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 339-389
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a0/
%G ru
%F CMFD_2019_65_3_a0
A. B. Antonevich; T. G. Shahava. Multiplication of distributions and algebras of mnemofunctions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 65 (2019) no. 3, pp. 339-389. http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a0/

[1] S. Albeverio, F. Gesztesy, R. Krohn Hoegh, H. Holden, Solvable Models in Quantum Mechanics, Mir, M., 1991 (Russian translation) | MR

[2] A. B. Antonevich, Ya. V. Radyno, “On general method of construction of distribution algebras”, Rep. Acad. Sci. USSR, 43:3 (1991), 680–684 (in Russian) | MR | Zbl

[3] A. B. Antonevich, T. A. Romanchuk, Equations with Delta-Like Coefficients: Finite-Dimensional Approximation Method, LAP Lambert, Saarbrucken, 2012 (in Russian)

[4] A. B. Antonevich, T. G. Shagova, “Embeddings of distributions into the algebra of mnemofunctions on a circle”, Probl. Phys. Math. Tech., 37:4 (2018), 52–61 (in Russian) | Zbl

[5] A. B. Antonevich, T. G. Shagova, E. V. Shkadinskaya, “Algebra of mnemofunctions on a circle”, Probl. Phys. Math. Tech., 36:3 (2018), 55–62 (in Russian) | Zbl

[6] A. B. Antonevich, A. Shukur Ali, “On grows of an analytical function in a circle”, Rep. Nat. Acad. Sci. Belarus, 60:5 (2016), 41–45 (in Russian) | MR | Zbl

[7] P. Antosik, Ya. Mikusinskiy, R. Sikorskiy, Theory of Distributions. Sequential Approach, Mir, M., 1976 (in Russian)

[8] F. A. Berezin, L. D. Faddeev, “A note on the Schrödinger equation with singular potential”, Rep. Acad. Sci. USSR, 137:5 (1961), 1011–1014 (in Russian) | Zbl

[9] G. Bremerman, Distributions, complex variables and Fourier transforms, Mir, M., 1965 (Russian translation)

[10] V. S. Vladimirov, Distributions in Mathematical Physics, Nauka, M., 1979 (in Russian)

[11] I. M. Gel'fand, G. E. Shilov, Distributions and Operations over Them, Fizmatlit, M., 1959 (in Russian)

[12] V. G. Danilov, V. P. Maslov, V. M. Shelkovich, “Algebras of singularities of singular solutions to first-order quasilinear strictly hyperbolic systems”, Theor. Math. Phys., 114:1 (1998), 3–55 (in Russian) | DOI | MR | Zbl

[13] M. Davis, Applied Nonstandard Analysis, Mir, M., 1980 (Russian translation)

[14] M. A. Evgrafov, Asymptotic Estimates and Whole Functions, Gostekhizdat, M., 1957 (in Russian) | MR

[15] Yu. V. Egorov, “To the theory of distributions”, Progr. Math. Sci., 45:5 (1990), 3–40 (in Russian) | MR | Zbl

[16] V. V. Zhikov, S. E. Pastukhova, “On operator estimates in the averaging theory”, Progr. Math. Sci., 71:3 (2016), 27–122 (in Russian) | DOI | MR | Zbl

[17] S. T. Zavalishchin, A. N. Sesekin, Impulse Processes. Models and Applications, Nauka, M., 1991 (in Russian) | MR

[18] V. K. Ivanov, “Hyperdistributions and multiplication of Schwarz distributions”, Rep. Acad. Sci. USSR, 204:5 (1972), 1045–1048 (in Russian) | Zbl

[19] V. B. Levenshtam, Differential Equations with Large High-Frequency Terms (Averages and Asymptotics), YUFU, Rostov-na-Donu, 2010 (in Russian)

[20] A. I. Markushevich, Theory of Analytic Functions, GITTL, M.–L., 1950 (in Russian) | MR

[21] I. V. Mel'nikova, V. A. Bovkun, U. A. Alekseeva, “Solution of quasilinear stochastic problems in abstract Colombo algebras”, Differ. Equ., 53:12 (2017), 1653–1663 (in Russian) | DOI | Zbl

[22] Yu. A. Mitropol'skiy, Averaging Method in Nonlinear Mechanics, Naukova dumka, Kiev, 1971 (in Russian) | MR

[23] T. A. Suslina, “Averaging of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, Algebra Anal., 29:2 (2017), 139–192 (in Russian) | MR

[24] Antonevich A., Burachewskij A., Radyno Ya., “On closability of nonclosable operators”, Panamer. Math. J., 7:4 (1997), 37–51 | MR | Zbl

[25] Antonevich A. B., Radyno Ya. V., “On the problem of distributions multiplication”, 10th Conf. «Problems and Methods in Mathematical Physics» (Chemnitz, Germany, Sep. 13–17), Teubner, Leipzig, 1994, 9–14 | DOI | MR

[26] Baglini L. L., Giordano P., “The Category of Colombeau algebras”, Monatsh. Math., 182 (2017), 649–674 | DOI | MR | Zbl

[27] Christov Ch., Damianov B., “Asymptotic functions — a new class of generalized functions. I”, Bulgar. J. Phys., 6 (1978), 543–556 | MR

[28] Christov Ch., Damianov B., “Asymptotic functions — a new class of generalized functions. II”, Bulgar. J. Phys., 1 (1979), 3–23 | MR

[29] Christov Ch., Damianov B., “Asymptotic functions — a new class of generalized functions. III”, Bulgar. J. Phys., 3 (1979), 245–256 | MR

[30] Christov Ch., Damianov B., “Asymptotic functions — a new class of generalized functions. IV”, Bulgar. J. Phys., 4 (1979), 377–397 | MR

[31] Colombeau J. F., “A multiplication of distributions”, J. Math. Anal. Appl., 94 (1983), 96–115 | DOI | MR | Zbl

[32] Colombeau J. F., New generalized functions and multiplication of distributions, North-Holland, Amsterdam, 1984 | MR | Zbl

[33] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R., Geometric theory of generalized functions with applications to general relativity, Kluwer Academic Publishers, Dordrecht, 2001 | MR | Zbl

[34] Kostenko A. S., Malamud M. M., “1-D Schrödinger operator with local point interaction on a discrete set”, J. Differ. Equ., 249 (2010), 253–304 | DOI | MR | Zbl

[35] Nedeljkov M., Pilipovic S., Scarpalezos D., Linear theory of Colombeau's generalized functions, Addison-Wesley Longman, Harlow, 1998 | MR

[36] Oberguggenberger M., Multiplication of distributions and application to partial differential equations, Longman Higher Education, Harlow, 1992 | MR

[37] Rosinger E. E., Generalized solutions of nonlinear partial differential equations, Mathematics Studies, North-Holland, 1987 | MR | Zbl

[38] Schwartz L., Théorie des distributions, en 2 vol, Hermann, Paris, 1950 | MR

[39] Schwartz L., “Sur l'impossibilité de la multiplication des distributions”, C. R. Acad. Sci. Paris, 239 (1954), 847–848 | MR | Zbl