Spectra of the energy operator of three-electron systems in the impurity Hubbard model. Second doublet state
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 109-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-electron systems in the impurity Hubbard model and investigated the spectra of the system in the second doublet state in the $\nu$-dimensional lattice $Z^{\nu}$.
@article{CMFD_2019_65_1_a9,
     author = {S. M. Tashpulatov},
     title = {Spectra of the energy operator of three-electron systems in the impurity {Hubbard} model. {Second} doublet state},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {109--123},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a9/}
}
TY  - JOUR
AU  - S. M. Tashpulatov
TI  - Spectra of the energy operator of three-electron systems in the impurity Hubbard model. Second doublet state
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 109
EP  - 123
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a9/
LA  - ru
ID  - CMFD_2019_65_1_a9
ER  - 
%0 Journal Article
%A S. M. Tashpulatov
%T Spectra of the energy operator of three-electron systems in the impurity Hubbard model. Second doublet state
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 109-123
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a9/
%G ru
%F CMFD_2019_65_1_a9
S. M. Tashpulatov. Spectra of the energy operator of three-electron systems in the impurity Hubbard model. Second doublet state. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 109-123. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a9/

[1] Yu. A. Izyumov, Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, Nauka, M., 1987 (in Russian) | MR

[2] B. V. Karpenko, V. V. Dyakin, G. L. Budrina, “Two electrons in the Hubbard Model”, Phys. Metal. Phys. Metallurgy, 61:4 (1986), 702–706 (in Russian)

[3] S. M. Tashpulatov, “Spectral properties of three-electron systems in the Hubbard model”, Theor. Math. Phys., 179:3 (2014), 387–405 (in Russian) | DOI | MR | Zbl

[4] Anderson S. W., “Localized magnetic states in metals”, Phys. Rev., 124 (1961), 41–53 | DOI | MR

[5] Gutzwiller M. C., “Effect of correlation on the ferromagnetism of transition metals”, Phys. Rev. Lett., 10 (1963), 159–162 | DOI

[6] Hubbard J., “Electron correlations in narrow energy bands”, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 276 (1963), 238–257 | DOI | MR

[7] Ichinose T., “Spectral properties of tensor products of linear operators, 1”, Trans. Am. Math. Soc., 235 (1978), 75–113 | DOI | MR | Zbl

[8] Ichinose T., “Spectral properties of tensor products of linear operators, 2: The approximate point spectrum and Kato essential spectrum”, Trans. Am. Math. Soc., 237 (1978), 223–254 | MR | Zbl

[9] Ichinose T., “Tensor products of linear operators. Spectral theory”, Banach Center Publ., 8, 1982, 294–300 | DOI

[10] Kanamori J., “Electron correlation and ferromagnetism of transition metals”, Prog. Theor. Phys., 30 (1963), 275–289 | DOI | Zbl

[11] Lieb E., “Two theorems on the Hubbard model”, Phys. Rev. Lett., 62 (1989), 1201–1204 | DOI | MR

[12] Mattis D., “The few-body problems on a lattice”, Rev. Mod. Phys., 58 (1986), 370–379 | DOI | MR

[13] Shubin S. S., Wonsowsky S. V., “On the electron theory of metals”, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 145 (1934), 159–180 | DOI

[14] Reed M., Simon B., Methods of modern mathematical physics, Acad. Press, New York, 1978 | MR | Zbl

[15] Tsvelick A. M., Wiegman S. B., “Exact results in the theory of magnetic alloys”, Adv. Phys., 32 (1983), 453–713 | DOI | MR