Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this a paper perturbations of multiple eigenvalues of E. Schmidt spectral problems is considered. At the usage of the reductional method suggested in the articles [10, 11] the investigation of the multiple E. Schmidt perturbation eigenvalues is reduced to the investigation of perturbation of simple ones. At the end, as application of the obtained results the problem about the boundary perturbation for the system of two Sturm–Liouville problems with E. Schmidt spectral parameter is considered.
@article{CMFD_2019_65_1_a6,
     author = {D. G. Rakhimov},
     title = {Reductional method in perturbation theory of generalized spectral {E.~Schmidt} problem},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/}
}
TY  - JOUR
AU  - D. G. Rakhimov
TI  - Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 72
EP  - 82
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/
LA  - ru
ID  - CMFD_2019_65_1_a6
ER  - 
%0 Journal Article
%A D. G. Rakhimov
%T Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 72-82
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/
%G ru
%F CMFD_2019_65_1_a6
D. G. Rakhimov. Reductional method in perturbation theory of generalized spectral E.~Schmidt problem. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 72-82. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/

[1] I. S. Arzhanykh, “Generalization of the Hamilton–Cayley theorem”, Rep. Acad. Sci. Uzbek SSR, 1951, no. 7, 3–5 (in Russian)

[2] I. S. Arzhanykh, V. I. Gugnina, “Extension of the Krylov, LeVerrier, and Faddeev methods to polynomial matrices”, Proc. Romanovskii Math. Univ., 24 (1962), 33–67 (in Russian)

[3] I. S. Arzhanykh, V. I. Gugnina, “On expansion of the characteristic equation”, Proc. Romanovskii Math. Univ., 26 (1962), 3–12 (in Russian)

[4] M. M. Vainberg, V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations, Nauka, M., 1969 (in Russian)

[5] D. V. Valovik, Yu. G. Smirnov, Propagation of Electromagnetic Waves in Nonlinear Foliated Media, PGU, Penza, 2010 (in Russian)

[6] A. S. Il'inskiy, G. Ya. Slepyan, Oscillations and Waves in Electrodynamic Systems with Dissipation, MGU, M., 1983 (in Russian)

[7] B. V. Loginov, V. E. Pospeev, “On eigenvalues and eigenvectors of a perturbed operator”, Bull. Acad. Sci. Uzbek SSR. Ser. Phys.-Math. Sci., 1967, no. 6, 29–35 (in Russian) | Zbl

[8] B. V. Loginov, Yu. B. Rusak, “Generalized Jordan structure in the branching theory”, Direct and Inverse Problems for Partial Differential Equations, Fan, Tashkent, 1978, 133–148 (in Russian)

[9] Sh. I. Mogilevskiy, “On representation of a completely continuous operator in the abstract Hilbert separable space”, Bull. Higher Edu. Inst. Ser. Math., 1958, no. 3, 183–186 (in Russian)

[10] D. G. Rakhimov, “On perturbation of Fredholm eigenvalues of linear operators”, SVMO, 17:3 (2015), 37–43 (in Russian) | Zbl

[11] D. G. Rakhimov, “On perturbation of Fredholm eigenvalues of linear operators”, Differ. Equ., 53:5 (2017), 607–616 (in Russian) | MR | Zbl

[12] Yu. B. Rusak, “Generalized Jordan structure of an analytic operator-function and its conjugate one”, Bull. Acad. Sci. Uzbek SSR. Ser. Phys.-Math. Sci., 1978, no. 2, 15–19 (in Russian) | Zbl

[13] Goursat E., Course d'Analyse Mathematique, Gautier-Villars, Paris, 1933 | MR

[14] Kuvshinova A. N., Loginov B. V., “Some concequences of the generalized Hamilton—Cayley theorem for matrices polynomially dependent on E. Schmidt spectral parameter”, ROMAI J., 10:1 (2014), 81–92 | MR | Zbl

[15] Loginov B. V., Rakhimov D. G., “On spectral problem for Laplace operator in domain with perturbed boundaries”, ROMAI J., 9:2 (2013), 129–141 | MR | Zbl

[16] Rellich F., “Storungstheory der Spektalzerlegung, I”, Math. Ann., 113 (1936), 600–619 | DOI | MR

[17] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. I”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[18] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. II”, Math. Ann., 64 (1907), 161–174 | DOI | MR | Zbl

[19] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. III”, Math. Ann., 65 (1908), 370–399 | DOI | MR | Zbl

[20] Sidorov N. V., Sinitsyn A. V., Falaleev M. V., Lyapunov—Schmidt methods in nonlinear analysis and applications, Kluwer, Dordrecht, 2002 | MR | Zbl