Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_1_a6, author = {D. G. Rakhimov}, title = {Reductional method in perturbation theory of generalized spectral {E.~Schmidt} problem}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {72--82}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/} }
TY - JOUR AU - D. G. Rakhimov TI - Reductional method in perturbation theory of generalized spectral E.~Schmidt problem JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 72 EP - 82 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/ LA - ru ID - CMFD_2019_65_1_a6 ER -
D. G. Rakhimov. Reductional method in perturbation theory of generalized spectral E.~Schmidt problem. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 72-82. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/
[1] I. S. Arzhanykh, “Generalization of the Hamilton–Cayley theorem”, Rep. Acad. Sci. Uzbek SSR, 1951, no. 7, 3–5 (in Russian)
[2] I. S. Arzhanykh, V. I. Gugnina, “Extension of the Krylov, LeVerrier, and Faddeev methods to polynomial matrices”, Proc. Romanovskii Math. Univ., 24 (1962), 33–67 (in Russian)
[3] I. S. Arzhanykh, V. I. Gugnina, “On expansion of the characteristic equation”, Proc. Romanovskii Math. Univ., 26 (1962), 3–12 (in Russian)
[4] M. M. Vainberg, V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations, Nauka, M., 1969 (in Russian)
[5] D. V. Valovik, Yu. G. Smirnov, Propagation of Electromagnetic Waves in Nonlinear Foliated Media, PGU, Penza, 2010 (in Russian)
[6] A. S. Il'inskiy, G. Ya. Slepyan, Oscillations and Waves in Electrodynamic Systems with Dissipation, MGU, M., 1983 (in Russian)
[7] B. V. Loginov, V. E. Pospeev, “On eigenvalues and eigenvectors of a perturbed operator”, Bull. Acad. Sci. Uzbek SSR. Ser. Phys.-Math. Sci., 1967, no. 6, 29–35 (in Russian) | Zbl
[8] B. V. Loginov, Yu. B. Rusak, “Generalized Jordan structure in the branching theory”, Direct and Inverse Problems for Partial Differential Equations, Fan, Tashkent, 1978, 133–148 (in Russian)
[9] Sh. I. Mogilevskiy, “On representation of a completely continuous operator in the abstract Hilbert separable space”, Bull. Higher Edu. Inst. Ser. Math., 1958, no. 3, 183–186 (in Russian)
[10] D. G. Rakhimov, “On perturbation of Fredholm eigenvalues of linear operators”, SVMO, 17:3 (2015), 37–43 (in Russian) | Zbl
[11] D. G. Rakhimov, “On perturbation of Fredholm eigenvalues of linear operators”, Differ. Equ., 53:5 (2017), 607–616 (in Russian) | MR | Zbl
[12] Yu. B. Rusak, “Generalized Jordan structure of an analytic operator-function and its conjugate one”, Bull. Acad. Sci. Uzbek SSR. Ser. Phys.-Math. Sci., 1978, no. 2, 15–19 (in Russian) | Zbl
[13] Goursat E., Course d'Analyse Mathematique, Gautier-Villars, Paris, 1933 | MR
[14] Kuvshinova A. N., Loginov B. V., “Some concequences of the generalized Hamilton—Cayley theorem for matrices polynomially dependent on E. Schmidt spectral parameter”, ROMAI J., 10:1 (2014), 81–92 | MR | Zbl
[15] Loginov B. V., Rakhimov D. G., “On spectral problem for Laplace operator in domain with perturbed boundaries”, ROMAI J., 9:2 (2013), 129–141 | MR | Zbl
[16] Rellich F., “Storungstheory der Spektalzerlegung, I”, Math. Ann., 113 (1936), 600–619 | DOI | MR
[17] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. I”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl
[18] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. II”, Math. Ann., 64 (1907), 161–174 | DOI | MR | Zbl
[19] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. III”, Math. Ann., 65 (1908), 370–399 | DOI | MR | Zbl
[20] Sidorov N. V., Sinitsyn A. V., Falaleev M. V., Lyapunov—Schmidt methods in nonlinear analysis and applications, Kluwer, Dordrecht, 2002 | MR | Zbl