Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 72-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In this a paper perturbations of multiple eigenvalues of E. Schmidt spectral problems is considered. At the usage of the reductional method suggested in the articles [10, 11] the investigation of the multiple E. Schmidt perturbation eigenvalues is reduced to the investigation of perturbation of simple ones. At the end, as application of the obtained results the problem about the boundary perturbation for the system of two Sturm–Liouville problems with E. Schmidt spectral parameter is considered.
@article{CMFD_2019_65_1_a6,
     author = {D. G. Rakhimov},
     title = {Reductional method in perturbation theory of generalized spectral {E.~Schmidt} problem},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/}
}
TY  - JOUR
AU  - D. G. Rakhimov
TI  - Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 72
EP  - 82
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/
LA  - ru
ID  - CMFD_2019_65_1_a6
ER  - 
%0 Journal Article
%A D. G. Rakhimov
%T Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 72-82
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/
%G ru
%F CMFD_2019_65_1_a6
D. G. Rakhimov. Reductional method in perturbation theory of generalized spectral E.~Schmidt problem. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 72-82. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a6/