Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_1_a5, author = {A. Ya. Narmanov}, title = {Geometry of orbits of vector fields and singular foliations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {54--71}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a5/} }
A. Ya. Narmanov. Geometry of orbits of vector fields and singular foliations. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 54-71. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a5/
[1] A. A. Azamov, A. Ya. Narmanov, “On limit sets of orbits of systems of vector fields”, Differ. Equ., 40:2 (2004), 257–260 (in Russian) | MR | Zbl
[2] V. N. Berestovskiy, Yu. G. Nikonorov, “Killing vector fields of constant length on Riemannian manifolds”, Sib. Math. J., 49:3 (2008), 497–514 (in Russian) | MR
[3] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Russian translation, v. 1, Nauka, M., 1981 | MR
[4] C. Lobry, “Dynamical polysystems and control theory”, Mathematical Methods in the Theory of Systems, Russian translation, Mir, M., 1979, 134–173
[5] A. Ya. Narmanov, “On the structure of the controllability set of continuously balanced control systems”, Bull. Leningrad Univ., 13 (1981), 50–55 (in Russian) | Zbl
[6] A. Ya. Narmanov, “On the transversal structure of the controllability set of symmetric control systems”, Differ. Equ., 32:6 (1996), 780–783 (in Russian) | MR | Zbl
[7] A. Ya. Narmanov, “On the dependence of the controllability set on the goal point”, Differ. Equ., 33:10 (1997), 1334–1338 (in Russian) | MR | Zbl
[8] A. Ya. Narmanov, “On the geometry of completely geodesic Riemannian foliations”, Bull. Higher Edu. Inst. Ser. Math., 1999, no. 9, 26–31 (in Russian) | MR | Zbl
[9] A. Ya. Narmanov, O. Kosimov, “On the geometry of Riemannian foliations of low-dimensional spheres”, Rep. Uzbek. Acad. Sci., 2013, no. 2, 96–105 (in Russian)
[10] A. Ya. Narmanov, S. Saitova, “On the geometry of orbits of Killing vector fields”, Diff. uravn., 50:12 (2014), 1582–1589 (in Russian) | DOI | Zbl
[11] A. Ya. Narmanov, S. Saitova, “O geometrii mnozhestva dostizhimosti vektornykh poley”, Differ. Equ., 53:3 (2017), 321–326 (in Russian) | DOI | Zbl
[12] P. K. Rashevskiy, “On connectability of any two points of a completely nonholonomic space by an admissible line”, Sci. Notes Moscow Pedagog. Inst. Ser. Phys.-Math. Sci., 1938, no. 2, 83–94 (in Russian)
[13] Agrachev A. A., Sachkov Y., Control theory from the geometric viewpoint, Springer, Berlin, 2004 | MR | Zbl
[14] Brockett R. W., “Lie algebras and Lie groups in control theory”, Geometric Methods in System Theory, Springer, Dordrecht, 1973, 43–82 | DOI | MR
[15] Cairns G., “A general description of totally geodesic foliations”, Tohoku Math. J., 38 (1986), 37–55 | DOI | MR | Zbl
[16] Chow W. L., “Uber systeme von linearen partiellen differential-gleinchangen ester ordmung”, Math. Ann., 117 (1939), 98–105 | MR
[17] Hermann R., “On the accessibility problem in control theory”, International symposium on nonlinear differential equations and nonlinear mechanics, Acad. Press, N. Y., 1963, 325–332 | DOI | MR
[18] Jurdjevic V., Geometric control theory, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl
[19] Levitt N., Sussmann H., “On controllability by means of two vector fields”, SIAM J. Control., 13:6 (1975), 1271–1281 | DOI | MR | Zbl
[20] Lobry C., “Controllability of nonlinear control dynamical systems”, Control Theory Topol. Funct. Anal., 1 (1976), 361–383 | MR
[21] Molino P., Riemaninan foliations, Birkhauser, Boston–Basel, 1988 | MR
[22] Morgan A., “Holonomy and metric properties of foliations in higher codimension”, Proc. Am. Math. Soc., 11 (1960), 236–242 | DOI | MR
[23] Nagano T., “Linear differential systems with singularities and application to transitive Lie algebras”, J. Math. Soc. Japan, 18 (1968), 338–404 | MR
[24] Nishimori T., “Behavior of leaves of codimension one foliations”, Tohoku Math. J., 29 (1977), 255–273 | DOI | MR | Zbl
[25] Reinhart B., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl
[26] Sacksteder R., “Foliations and pseudogroups”, Am. J. Math., 87 (1965), 79–102 | DOI | MR | Zbl
[27] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. Lond. Math. Soc., 29 (1974), 694–713 | MR
[28] Sussmann H., “Orbits of family of vector fields and integrability of distribution”, Trans. Am. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl
[29] Sussmann H., “Orbits of family of vector fields and integrability of systems with singularities”, Bull. Am. Math. Soc., 79 (1973), 197–199 | DOI | MR | Zbl
[30] Sussmann H., Jurdjevich V., “Controllability of nonlinear systems”, J. Differ. Equ., 12 (1972), 95–116 | DOI | MR | Zbl
[31] Tondeur Ph., Foliations on Riemannian manifolds, Springer, N. Y., 1988 | MR | Zbl