Geometry of orbits of vector fields and singular foliations
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 54-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of this paper is the geometry of orbits of a family of smooth vector fields defined on a smooth manifold and singular foliations generated by the orbits. As is well known, the geometry of orbits of vector fields is one of the main subjects of investigation in geometry and control theory. Here we propose some author's results on this problem. Throughout this paper, the smoothness means $C^{\infty}$-smoothness.
@article{CMFD_2019_65_1_a5,
     author = {A. Ya. Narmanov},
     title = {Geometry of orbits of vector fields and singular foliations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {54--71},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a5/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
TI  - Geometry of orbits of vector fields and singular foliations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 54
EP  - 71
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a5/
LA  - ru
ID  - CMFD_2019_65_1_a5
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%T Geometry of orbits of vector fields and singular foliations
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 54-71
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a5/
%G ru
%F CMFD_2019_65_1_a5
A. Ya. Narmanov. Geometry of orbits of vector fields and singular foliations. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 54-71. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a5/