Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_1_a3, author = {Kh. Kh. Imomnazarov and N. M. Jabborov}, title = {Application of $A$-analytic functions to the investigation of the {Cauchy} problem for a stationary poroelasticity system}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {33--43}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a3/} }
TY - JOUR AU - Kh. Kh. Imomnazarov AU - N. M. Jabborov TI - Application of $A$-analytic functions to the investigation of the Cauchy problem for a stationary poroelasticity system JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 33 EP - 43 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a3/ LA - ru ID - CMFD_2019_65_1_a3 ER -
%0 Journal Article %A Kh. Kh. Imomnazarov %A N. M. Jabborov %T Application of $A$-analytic functions to the investigation of the Cauchy problem for a stationary poroelasticity system %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 33-43 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a3/ %G ru %F CMFD_2019_65_1_a3
Kh. Kh. Imomnazarov; N. M. Jabborov. Application of $A$-analytic functions to the investigation of the Cauchy problem for a stationary poroelasticity system. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a3/
[1] L. A. Aizenberg, Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 (in Russian) | MR
[2] E. V. Arbuzov, “The Cauchy problem for second-order elliptic systems on a plane”, Sib. Math. J., 44:1 (2003), 3–20 (in Russian) | MR | Zbl
[3] A. V. Bitsadze, Some Classes of Partial Differential Equations, Nauka, M., 1981 (in Russian)
[4] A. L. Bukhgeym, Introduction to the Theory of Inverse Problems, Nauka, Novosibirsk, 1988 (in Russian) | MR
[5] I. N. Vekua, New Methods for Solving of Elliptic Equations, OGIZ, M., 1948 (in Russian) | MR
[6] I. N. Vekua, Generalized Analytic Functions, Nauka, M., 1988 (in Russian)
[7] I. E. Niezov, “The Cauchy problem for a system of the elasticity theory on a plane”, Uzbek Math. J., 1996, no. 1, 27–34 (in Russian) | MR
[8] R. S. Saks, Boundary-Value Problems for Systems of Elliptic Equations, NGU, Novosibirsk, 1975 (in Russian)
[9] A. P. Soldatov, “Higher-order elliptic systems”, Differ. Equ., 25:1 (1989), 136–144 (in Russian) | MR | Zbl
[10] A. P. Soldatov, One-Dimensional Singular Operators and Boundary-Value Problems of the Elasticity Theory, Vysshaya shkola, M., 1991 (in Russian)
[11] N. E. Tovmasyan, “General boundary-value problem for second-order elliptic systems with constant coefficients”, Differ. Equ., 2:2 (1966), 163–171 (in Russian) | MR
[12] Ya. I. Frenkel', “To the theory of seismic and seismoelectrical phenomena in a moist soil”, Bull. Acad. Sci. USSR. Ser. Geograph. Geophys., 8:4 (1944), 133–150 (in Russian) | Zbl
[13] Arbuzov E. V., Bukhgeim A. L., “Carleman's formulas for $A$-analytic functions in a half-plane”, J. Inverse Ill-Posed Probl., 5:6 (1997), 491–505 | DOI | MR | Zbl
[14] Bers L., Theory of pseudo-analytic functions, Lecture Notes, N.Y., 1953 | MR | Zbl
[15] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range”, J. Acoust. Soc. Am., 28:2 (1956), 168–178 | DOI | MR
[16] Bitsadze A. V., Boundary value problems for second-order elliptic equations, North-Holland, Amsterdam, 1968 | MR | Zbl
[17] Blokhin A. M., Dorovsky V. N., Mathematical modelling in the theory of multivelocity continuum, Nova Science, New York, 1995 | MR
[18] Bonnet G., “Basic singular solutions for a poroelastic medium in the dynamic range”, J. Acoust. Soc. Am., 82 (1987), 1758–1762 | DOI
[19] Dorovsky V. N., Perepechko Yu. V., Romensky E. I., “Wave processes in saturated porous elastically deformed media”, Combustion, Explosion and Shock Waves, 29:1 (1993), 93–103 | DOI
[20] Giraud G., “Nouvelles methode pour traiter certaines problemes relatifs aux equations du type elliptique”, J. de Math., 18 (1939), 111–143 | MR
[21] Gorog S., Panneton R., Atalla N., “Mixed displacement-pressure formulation for acoustic anisotropic open porous media”, J. Appl. Phys., 82 (1997), 4192–4196 | DOI
[22] Imomnazarov Kh. Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl
[23] Lavrentiev M. M., Some improperly posed problems in mathematical physics, Springer, Berlin, 1967