Covariant functors and shapes in the category of compacts
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider covariant functors $F:Comp\to Comp$ acting in category of shape-preserving compact sets [2], infinite compact sets, and shape equivalence [9]. Also we study action of compact functors and shape properties of the compact space $X$ consisting of connected components $\square X $ of the compact $X$ as well as shape identity $ShX=ShY$ of infinite compacts $X$ and $Y$ for the space $P(X)$ of probability measures and its subspaces.
@article{CMFD_2019_65_1_a2,
     author = {T. F. Zhuraev and Z. O. Tursunova and Q. R. Zhuvonov},
     title = {Covariant functors and shapes in the category of compacts},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a2/}
}
TY  - JOUR
AU  - T. F. Zhuraev
AU  - Z. O. Tursunova
AU  - Q. R. Zhuvonov
TI  - Covariant functors and shapes in the category of compacts
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 21
EP  - 32
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a2/
LA  - ru
ID  - CMFD_2019_65_1_a2
ER  - 
%0 Journal Article
%A T. F. Zhuraev
%A Z. O. Tursunova
%A Q. R. Zhuvonov
%T Covariant functors and shapes in the category of compacts
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 21-32
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a2/
%G ru
%F CMFD_2019_65_1_a2
T. F. Zhuraev; Z. O. Tursunova; Q. R. Zhuvonov. Covariant functors and shapes in the category of compacts. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a2/

[1] A. B. Arkhangel'skiy, “An addition theorem for the weight of sets lying in bicompacts”, Rep. Acad. Sci. USSR, 126:2 (1959), 239–241 (in Russian)

[2] K. Borsuk, Theory of Shape, Mir, M., 1976 (in Russian)

[3] T. F. Zhuraev, Some geometric properties of the functor $P$ of probability measures and its subfunctors, PhD Thesis, MGU, M., 1989 (in Russian) | MR

[4] V. I. Ponomarev, “On continuous partitions of bicompacts”, Progr. Math. Sci., 12 (1957), 335–340 (in Russian) | Zbl

[5] V. V. Fedorchuk, “Probability measures in topology”, Progr. Math. Sci., 46:1 (1991), 41–80 (in Russian) | MR | Zbl

[6] E. V. Shepin, “Functors and uncountable powers of compacts”, Progr. Math. Sci., 36:3 (1981), 3–62 (in Russian) | MR

[7] Kodama Y., Spiez S., Watanabe T., “On shapes of hyperspaces”, Fund. Math., 11 (1978), 59–67 | DOI | MR

[8] Mardešić S., Segal J., “Shapes of compacta and ANR-systems”, Fund. Math., 72 (1971), 41–59 | DOI | MR | Zbl

[9] Mardešić S., Segal J., “Equivalence of the Borsuk and the ANR-system approach to shapes”, Fund. Math., 72 (1971), 61–66 | DOI | MR

[10] Mazurkiewicz S., Sierpiński W., “Contribution à la topologie des ensembles dénombrables”, Fund. Math., 1:1 (1920), 17–27 | DOI | Zbl

[11] Mrozik P., “Hereditary shape equivalences and complement theorems”, Top. Appl., 22:1 (1986), 131–137 | DOI | MR | Zbl

[12] Pelczyński A., “A remark on spaces $2^*$ for zerodimensional $X$”, Bull. Acad. Polon. Scr. Sci. Math. Astronom. Phys., 19 (1965), 85–89 | MR