The cyclical compactness in Banach $C_{\infty}(Q)$-modules
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the class of laterally complete commutative unital regular algebras $\mathcal A$ over arbitrary fields. We introduce a notion of passport $ \Gamma(X)$ for a faithful regular laterally complete $\mathcal A$-modules $X$, which consist of uniquely defined partition of unity in the Boolean algebra of all idempotents in $\mathcal A$ and of the set of pairwise different cardinal numbers. We prove that $\mathcal A$-modules $X$ and $Y$ are isomorphic if and only if $ \Gamma(X) = \Gamma(Y)$. Further we study Banach $\mathcal A$-modules in the case $\mathcal A=C_\infty(Q)$ or $\mathcal A=C_\infty(Q) + i\cdot C_\infty(Q)$. We establish the equivalence of all norms in a finite-dimensional (respectively, $\sigma$-finite-dimensional) $\mathcal A$-module and prove an $\mathcal A$-version of Riesz Theorem, which gives the criterion of a finite-dimensionality (respectively, $\sigma$-finite-dimensionality) of a Banach $\mathcal A$-module.
@article{CMFD_2019_65_1_a11,
     author = {V. I. Chilin and J. A. Karimov},
     title = {The cyclical compactness in {Banach} $C_{\infty}(Q)$-modules},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/}
}
TY  - JOUR
AU  - V. I. Chilin
AU  - J. A. Karimov
TI  - The cyclical compactness in Banach $C_{\infty}(Q)$-modules
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 137
EP  - 155
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/
LA  - ru
ID  - CMFD_2019_65_1_a11
ER  - 
%0 Journal Article
%A V. I. Chilin
%A J. A. Karimov
%T The cyclical compactness in Banach $C_{\infty}(Q)$-modules
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 137-155
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/
%G ru
%F CMFD_2019_65_1_a11
V. I. Chilin; J. A. Karimov. The cyclical compactness in Banach $C_{\infty}(Q)$-modules. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/

[1] I. G. Ganiev, K. K. Khudaybergenov, “Finite-dimensional modules over the ring of measurable functions”, Uzbek Math. J., 2004, no. 4, 3–9 (in Russian)

[2] Zh. A. Karimov, “Kaplanskii–Hilbert modules over the algebra of measurable functions”, Uzbek Math. J., 2010, no. 4, 74–81 (in Russian)

[3] Zh. A. Karimov, “Equivalence of norms in finite-dimensional $C_\infty(Q)$-modules”, Bull. Nat. Univ. Uzbek., 2017, no. 2/1, 100–108 (in Russian)

[4] A. G. Kusraev, Vector Duality and Its Applications, Nauka, Novosibirsk, 1985 (in Russian)

[5] M. A. Muratov, V. I. Chilin, Algebras of Measurable and Locally Measurable Operators, Inst. mat. NAN Ukr., Kiev, 2007 (in Russian)

[6] L. A. Skornyakov, Dedekind Complemented Structures and Regular Rings, Fizmatgiz, M., 1961 (in Russian)

[7] V. I. Chilin, “Partially ordered Baire involutive algebras”, Totals Sci. Tech. Ser. Contemp. Probl. Math. New Progr., 27, 1985, 99–128 (in Russian) | MR

[8] V. I. Chilin, Zh. A. Karimov, “Disjunct complete $C_{\infty}(Q)$-modules”, Vladikavkaz Math. J., 16:2 (2014), 69–78 (in Russian) | MR | Zbl

[9] Berberian S. K., “The regular ring of a finite $AW*$-algebra”, Ann. Math., 65:2 (1957), 224–240 | DOI | MR | Zbl

[10] Chilin V. I., Karimov J. A., “Strictly homogeneous laterally complete modules”, J. Phys. Conf. Ser., 697 (2016), 012002 | DOI

[11] Clifford A. N., Preston G. B., The algebraic theory of semigroups, v. 1, Am. Math. Soc., Providence, 1961 | MR | Zbl

[12] Kaplansky J., “Projections in Banach algebras”, Ann. Math., 53 (1951), 235–249 | DOI | MR | Zbl

[13] Kaplansky J., “Algebras of type I”, Ann. Math., 56 (1952), 450–472 | DOI | MR

[14] Kaplansky J., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl

[15] Kusraev A. G., Dominated operators, Kluwer, Dordrecht, 2000 | MR | Zbl

[16] Maeda F., Kontinuierliche Geometrien, Springer, Berlin–Heidelberg, 1958 | MR

[17] Saito K., “On the algebra of measurable operators for a general $AW*$-algebra, I”, Tohoku Math. J., 21:2 (1969), 249–270 | DOI | MR | Zbl

[18] Saito K., “On the algebra of measurable operators for a general $AW*$-algebra, II”, Tohoku Math. J., 23:3 (1971), 525–534 | DOI | MR

[19] Segal I., “A noncommutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[20] van der Waerdenm B. L., Algebra, v. II, Springer, New York, 1991 | MR

[21] Vulikh B. Z., Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ., Groningen, 1967 | MR | Zbl

[22] Yeadon F. J., “Convergence of measurable operators”, Math. Proc. Cambridge Philos. Soc., 74:2 (1973), 257–268 | DOI | MR | Zbl