The cyclical compactness in Banach $C_{\infty}(Q)$-modules
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the class of laterally complete commutative unital regular algebras $\mathcal A$ over arbitrary fields. We introduce a notion of passport $ \Gamma(X)$ for a faithful regular laterally complete $\mathcal A$-modules $X$, which consist of uniquely defined partition of unity in the Boolean algebra of all idempotents in $\mathcal A$ and of the set of pairwise different cardinal numbers. We prove that $\mathcal A$-modules $X$ and $Y$ are isomorphic if and only if $ \Gamma(X) = \Gamma(Y)$. Further we study Banach $\mathcal A$-modules in the case $\mathcal A=C_\infty(Q)$ or $\mathcal A=C_\infty(Q) + i\cdot C_\infty(Q)$. We establish the equivalence of all norms in a finite-dimensional (respectively, $\sigma$-finite-dimensional) $\mathcal A$-module and prove an $\mathcal A$-version of Riesz Theorem, which gives the criterion of a finite-dimensionality (respectively, $\sigma$-finite-dimensionality) of a Banach $\mathcal A$-module.
@article{CMFD_2019_65_1_a11,
author = {V. I. Chilin and J. A. Karimov},
title = {The cyclical compactness in {Banach} $C_{\infty}(Q)$-modules},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {137--155},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/}
}
TY - JOUR
AU - V. I. Chilin
AU - J. A. Karimov
TI - The cyclical compactness in Banach $C_{\infty}(Q)$-modules
JO - Contemporary Mathematics. Fundamental Directions
PY - 2019
SP - 137
EP - 155
VL - 65
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/
LA - ru
ID - CMFD_2019_65_1_a11
ER -
V. I. Chilin; J. A. Karimov. The cyclical compactness in Banach $C_{\infty}(Q)$-modules. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/