The cyclical compactness in Banach $C_{\infty}(Q)$-modules
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the class of laterally complete commutative unital regular algebras $\mathcal A$ over arbitrary fields. We introduce a notion of passport $ \Gamma(X)$ for a faithful regular laterally complete $\mathcal A$-modules $X$, which consist of uniquely defined partition of unity in the Boolean algebra of all idempotents in $\mathcal A$ and of the set of pairwise different cardinal numbers. We prove that $\mathcal A$-modules $X$ and $Y$ are isomorphic if and only if $ \Gamma(X) = \Gamma(Y)$. Further we study Banach $\mathcal A$-modules in the case $\mathcal A=C_\infty(Q)$ or $\mathcal A=C_\infty(Q) + i\cdot C_\infty(Q)$. We establish the equivalence of all norms in a finite-dimensional (respectively, $\sigma$-finite-dimensional) $\mathcal A$-module and prove an $\mathcal A$-version of Riesz Theorem, which gives the criterion of a finite-dimensionality (respectively, $\sigma$-finite-dimensionality) of a Banach $\mathcal A$-module.
@article{CMFD_2019_65_1_a11,
     author = {V. I. Chilin and J. A. Karimov},
     title = {The cyclical compactness in {Banach} $C_{\infty}(Q)$-modules},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/}
}
TY  - JOUR
AU  - V. I. Chilin
AU  - J. A. Karimov
TI  - The cyclical compactness in Banach $C_{\infty}(Q)$-modules
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 137
EP  - 155
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/
LA  - ru
ID  - CMFD_2019_65_1_a11
ER  - 
%0 Journal Article
%A V. I. Chilin
%A J. A. Karimov
%T The cyclical compactness in Banach $C_{\infty}(Q)$-modules
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 137-155
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/
%G ru
%F CMFD_2019_65_1_a11
V. I. Chilin; J. A. Karimov. The cyclical compactness in Banach $C_{\infty}(Q)$-modules. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/