Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_1_a11, author = {V. I. Chilin and J. A. Karimov}, title = {The cyclical compactness in {Banach} $C_{\infty}(Q)$-modules}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {137--155}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/} }
TY - JOUR AU - V. I. Chilin AU - J. A. Karimov TI - The cyclical compactness in Banach $C_{\infty}(Q)$-modules JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 137 EP - 155 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/ LA - ru ID - CMFD_2019_65_1_a11 ER -
V. I. Chilin; J. A. Karimov. The cyclical compactness in Banach $C_{\infty}(Q)$-modules. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a11/
[1] I. G. Ganiev, K. K. Khudaybergenov, “Finite-dimensional modules over the ring of measurable functions”, Uzbek Math. J., 2004, no. 4, 3–9 (in Russian)
[2] Zh. A. Karimov, “Kaplanskii–Hilbert modules over the algebra of measurable functions”, Uzbek Math. J., 2010, no. 4, 74–81 (in Russian)
[3] Zh. A. Karimov, “Equivalence of norms in finite-dimensional $C_\infty(Q)$-modules”, Bull. Nat. Univ. Uzbek., 2017, no. 2/1, 100–108 (in Russian)
[4] A. G. Kusraev, Vector Duality and Its Applications, Nauka, Novosibirsk, 1985 (in Russian)
[5] M. A. Muratov, V. I. Chilin, Algebras of Measurable and Locally Measurable Operators, Inst. mat. NAN Ukr., Kiev, 2007 (in Russian)
[6] L. A. Skornyakov, Dedekind Complemented Structures and Regular Rings, Fizmatgiz, M., 1961 (in Russian)
[7] V. I. Chilin, “Partially ordered Baire involutive algebras”, Totals Sci. Tech. Ser. Contemp. Probl. Math. New Progr., 27, 1985, 99–128 (in Russian) | MR
[8] V. I. Chilin, Zh. A. Karimov, “Disjunct complete $C_{\infty}(Q)$-modules”, Vladikavkaz Math. J., 16:2 (2014), 69–78 (in Russian) | MR | Zbl
[9] Berberian S. K., “The regular ring of a finite $AW*$-algebra”, Ann. Math., 65:2 (1957), 224–240 | DOI | MR | Zbl
[10] Chilin V. I., Karimov J. A., “Strictly homogeneous laterally complete modules”, J. Phys. Conf. Ser., 697 (2016), 012002 | DOI
[11] Clifford A. N., Preston G. B., The algebraic theory of semigroups, v. 1, Am. Math. Soc., Providence, 1961 | MR | Zbl
[12] Kaplansky J., “Projections in Banach algebras”, Ann. Math., 53 (1951), 235–249 | DOI | MR | Zbl
[13] Kaplansky J., “Algebras of type I”, Ann. Math., 56 (1952), 450–472 | DOI | MR
[14] Kaplansky J., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl
[15] Kusraev A. G., Dominated operators, Kluwer, Dordrecht, 2000 | MR | Zbl
[16] Maeda F., Kontinuierliche Geometrien, Springer, Berlin–Heidelberg, 1958 | MR
[17] Saito K., “On the algebra of measurable operators for a general $AW*$-algebra, I”, Tohoku Math. J., 21:2 (1969), 249–270 | DOI | MR | Zbl
[18] Saito K., “On the algebra of measurable operators for a general $AW*$-algebra, II”, Tohoku Math. J., 23:3 (1971), 525–534 | DOI | MR
[19] Segal I., “A noncommutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl
[20] van der Waerdenm B. L., Algebra, v. II, Springer, New York, 1991 | MR
[21] Vulikh B. Z., Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ., Groningen, 1967 | MR | Zbl
[22] Yeadon F. J., “Convergence of measurable operators”, Math. Proc. Cambridge Philos. Soc., 74:2 (1973), 257–268 | DOI | MR | Zbl