On formulation of modified problems for the Euler--Darboux equation with parameters equal to~$\dfrac{1}{2}$ in absolute value
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 11-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Euler–Darboux equation with parameters equal to $\dfrac{1}{2}$ in absolute value. Since the Cauchy problem in the classical formulation in ill-posed for such values of parameters, we propose formulations and solutions of modified Cauchy-type problems with the following values of parameters: a) $\alpha=\beta=\frac{1}{2},$ b) $\alpha=- \frac{1}{2},$ $\beta=- \frac{1}{2},$ c) $\alpha=\beta=- \frac{1}{2}.$ In the case а), the modified Cauchy problem is solved by the Riemann method. We use the obtained result to formulate the analog of the problem $\Delta_1$ in the first quadrant with shifted boundary-value conditions on axes and nonstandard conjunction conditions on the singularity line of the coefficients of the equation $y=x.$ The first condition is gluing normal derivatives of the solution and the second one contains limiting values of combination of the solution and its normal derivatives. The problem is reduced to a uniquely solvable system of integral equations.
@article{CMFD_2019_65_1_a1,
     author = {M. V. Dolgopolov and I. N. Rodionova},
     title = {On formulation of modified problems for the {Euler--Darboux} equation with parameters equal to~$\dfrac{1}{2}$ in absolute value},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/}
}
TY  - JOUR
AU  - M. V. Dolgopolov
AU  - I. N. Rodionova
TI  - On formulation of modified problems for the Euler--Darboux equation with parameters equal to~$\dfrac{1}{2}$ in absolute value
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 11
EP  - 20
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/
LA  - ru
ID  - CMFD_2019_65_1_a1
ER  - 
%0 Journal Article
%A M. V. Dolgopolov
%A I. N. Rodionova
%T On formulation of modified problems for the Euler--Darboux equation with parameters equal to~$\dfrac{1}{2}$ in absolute value
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 11-20
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/
%G ru
%F CMFD_2019_65_1_a1
M. V. Dolgopolov; I. N. Rodionova. On formulation of modified problems for the Euler--Darboux equation with parameters equal to~$\dfrac{1}{2}$ in absolute value. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/