Voir la notice du chapitre de livre
@article{CMFD_2019_65_1_a1,
author = {M. V. Dolgopolov and I. N. Rodionova},
title = {On formulation of modified problems for the {Euler{\textendash}Darboux} equation with parameters equal to~$\dfrac{1}{2}$ in absolute value},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {11--20},
year = {2019},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/}
}
TY - JOUR
AU - M. V. Dolgopolov
AU - I. N. Rodionova
TI - On formulation of modified problems for the Euler–Darboux equation with parameters equal to $\dfrac{1}{2}$ in absolute value
JO - Contemporary Mathematics. Fundamental Directions
PY - 2019
SP - 11
EP - 20
VL - 65
IS - 1
UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/
LA - ru
ID - CMFD_2019_65_1_a1
ER -
%0 Journal Article
%A M. V. Dolgopolov
%A I. N. Rodionova
%T On formulation of modified problems for the Euler–Darboux equation with parameters equal to $\dfrac{1}{2}$ in absolute value
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 11-20
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/
%G ru
%F CMFD_2019_65_1_a1
M. V. Dolgopolov; I. N. Rodionova. On formulation of modified problems for the Euler–Darboux equation with parameters equal to $\dfrac{1}{2}$ in absolute value. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a1/
[1] H. Bateman, A. Erdélyi, Higher Transcendental Functions, Russian translation, v. I, Nauka, M., 1973
[2] V. F. Volkodavov, N. Ya. Nikolaev, “On a new problem with shift in unbounded domain for the Euler–Darboux equation with positive parameters”, Mathematical Physics, KPtI, Kuybyshev, 1979, 3–9 (in Russian)
[3] V. F. Volkodavov, O. A. Repin, “Solution of a boundary-value problem with shift for a hyperbolic equation”, Differential Equations and Their Applications, KPtI, Kuybyshev, 1975, 15–21 (in Russian)
[4] V. F. Volkodavov, I. N. Rodionova, S. V. Bushkov, “Solution of a modified Cauchy problem by the Riemann method for one spatial analog of the Euler–Darboux equation with negative parameter”, Differ. Equ., 36:4 (2000), 616–619 (in Russian) | MR | Zbl
[5] V. F. Volkodavov, V. A. Spitsyn, Yu. I. Fedorov, “Boundary-value problems for one system of equations in rigid-plastic media”, Differential Equations (Mathematical Physics), 236, Ped. Univ., Kuybyshev, 1980, 36–45 (in Russian)
[6] V. M. Dolgopolov, M. V. Dolgopolov, I. N. Rodionova, “Construction of special classes of solutions for some hyperbolic differential equations”, Rep. Russ. Acad. Sci., 429:5 (2009), 583–589 (in Russian) | MR | Zbl
[7] V. M. Dolgopolov, M. V. Dolgopolov, I. N. Rodionova, “On delta-problems for generalized Euler–Darboux equation”, Nat. Univ. Uzbekistan, Tashkent, 2017, 203–204 (in Russian)
[8] V. M. Dolgopolov, I. N. Rodionova, “Modified Cauchy problem for one third-order hyperbolic problem in three-dimensional space”, Bull. Samara State Tech. Univ. Ser. Phys.-Math. Sci., 1:18 (2009), 41–46 (in Russian) | DOI
[9] M. V. Dolgopolov, I. N. Rodionova, “Problems for equations of hyperbolic type on a plane and in a three-dimensional space with conjugation conditions on a characteristic”, Bull. Russ. Acad. Sci. Ser. Math., 75:4 (2011), 21–28 (in Russian) | DOI | MR | Zbl
[10] V. M. Dolgopolov, I. N. Rodionova, “Extremal properties of special classes of solutions for one equation of hyperbolic type”, Math. Notes, 92:4 (2012), 533–540 (in Russian) | DOI | MR | Zbl
[11] M. V. Dolgopolov, I. N. Rodionova, V. M. Dolgopolov, “On one nonlocal problem for the Euler–Darboux equation”, Bull. Samara State Tech. Univ. Ser. Phys.-Math. Sci., 20:2 (2016), 259–275 (in Russian) | DOI | Zbl
[12] L. D. Landau, E. M. Lifshits, Mechanics of Continua, Gostekhizdat, M., 1953 (in Russian) | MR
[13] A. M. Nakhushev, “New boundary-value problem for one degenerating hyperbolic equation”, Rep. Acad. Sci. USSR, 187:4 (1969), 736–739 (in Russian) | Zbl
[14] A. M. Nakhushev, “On some new boundary-value problems for hyperbolic equations and mixed-type equations”, Differ. Equ., 5:1 (1969), 44–59 (in Russian) | MR | Zbl
[15] Z. A. Nakhusheva, Nonlocal Boundary-Value Problems for Differential Equation of Main Types and Mixed Type, Kabardino-Balkarskiy nauchnyy tsentr RAN, Nal'chik, 2012 (in Russian)
[16] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and Derivatives of Fractional Order and Some Their Applications, Nauka i tekhnika, Minsk, 1987 (in Russian)
[17] M. M. Smirnov, Degenerating Hyperbolic Equations, Vysheyshaya shkola, Minsk, 1977 (in Russian)
[18] M. M. Smirnov, Equations of Mixed Type, Vysshaya shkola, M., 1985 (in Russian) | MR
[19] V. V. Sokolovskiy, Mechanics of Continua, Fizmatgiz, M., 1960 (in Russian)
[20] K. P. Stanyukovich, Theory of Unsteady Motions of a Gas, Byuro novoy tekhniki, M., 1948 (in Russian)
[21] S. A. Chaplygin, Collected Works, v. 2, On Gas Jets, Gostekhizdat, M.–L., 1948 (in Russian) | MR
[22] F. I. Frankl', Selected Works on Gas Dynamics, Nauka, M., 1973 (in Russian)
[23] I. N. Rodionova, V. M. Dolgopolov, M. V. Dolgopolov, “Delta-problems for the generalized Euler–Darboux equation”, Bull. Samara State Tech. Univ. Ser. Phys.-Math. Sci., 21:3 (2017), 417–422 | DOI | Zbl